Here is your pdf: Complex Numbers

The length of the document below is: 23 page(s) long

The self-declared author(s) is/are:

www.maths.ox.ac.uk

The subject is as follows:
Subject: Original authors did not specify.

The original URL is: LINK

The access date was:
Access date: 2019-02-26 11:16:29.971439

Please be aware that this may be under copyright restrictions. Please send an email to admin@pharmacoengineering.com for any AI-generated issues.

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

The content is as follows:

Week4ŒComplexNumbers

RichardEarl

MathematicalInstitute,Oxford,OX12LB,

November2003

Abstract

Cartesianandpolarformofacomplexnumber.Th

eArganddiagram.Rootsofunity.Therelation-

shipbetweenexponentialandtrigonometricfu

nctions.ThegeometryoftheArganddiagram.

1TheNeedForComplexNumbers

Allofyouwillknowthatthetworootsofthequadraticequation

2++=0are=±242(1)andsolvingquadraticequationsissomethingtha

tmathematicianshavebeenabletodosincethetime

oftheBabylonians.When

24

0thenthesetworootsarerealanddistinct;graphicallytheyare

wherethecurve

=2++cutsthe

-axis.When

24=0thenwehaveonerealrootand

thecurvejusttouchesthe

-axishere.Butwhathappenswhen

24

0?Thentherearenoreal

solutionstotheequationasnorealsquarestogivethenegative

24

Fromthegraphicalpointof

viewthecurve

=2++liesentirelyaboveorbelowthe

-axis.-1123-1123Distinctrealroots

-11231234Repeatedrealroot

-11230.511.522.533.54Complexroots

Itisonlycomparativelyrecentlythatmathematicianshavebeencomfortablewiththeserootswhen

24

0DuringtheRenaissancethequadraticwouldhavebeenconsideredunsolvableoritsroots

wouldhavebeencalled

imaginary.

(Theterm‚imaginary™was

ÞrstusedbytheFrenchMathematician

RenéDescartes(1596-1650).Whilstheisknownmoreas

aphilosopher,Descartesmademanyimportant

contributionstomathematicsandhelpedfoundco-ordinategeometryŠhencethenamingofCartesian

co-ordinates.)Ifweimagine

1toexist,andthatitbehaves(addsandmultiplies)muchthesameas

othernumbersthenthetworootsofthequadraticcanbewrittenintheform

=±1(2)where=2and=422arerealnumbers.

ThesehandoutsareproducedbyRichardEarl,whoistheSchoolsLiaisonandAccessO

cerformathematics,statistics

andcomputerscienceatOxfordUniversity.Anycomments,suggestionsorrequestsforothermaterialarewelcomeat

earl@maths.ox.ac.uk

Please note all content on this page was automatically generated via our AI-based algorithm (BishopKingdom ID: 1hfPu7w9q0O36lVhLmgJ). Please let us know if you find any errors.