The length of the document below is: 23 page(s) long
The self-declared author(s) is/are:
www.maths.ox.ac.uk
The subject is as follows:
Subject: Original authors did not specify.
The original URL is: LINK
The access date was:
Access date: 2019-02-26 11:16:29.971439
Please be aware that this may be under copyright restrictions. Please send an email to admin@pharmacoengineering.com for any AI-generated issues.
Loading...
The content is as follows:
Week4ŒComplexNumbers
RichardEarl
MathematicalInstitute,Oxford,OX12LB,
November2003
Abstract
Cartesianandpolarformofacomplexnumber.Th
eArganddiagram.Rootsofunity.Therelation-
shipbetweenexponentialandtrigonometricfu
nctions.ThegeometryoftheArganddiagram.
1TheNeedForComplexNumbers
Allofyouwillknowthatthetworootsofthequadraticequation
2++=0are=±242(1)andsolvingquadraticequationsissomethingtha
tmathematicianshavebeenabletodosincethetime
oftheBabylonians.When
24
0thenthesetworootsarerealanddistinct;graphicallytheyare
wherethecurve
=2++cutsthe
-axis.When
24=0thenwehaveonerealrootand
thecurvejusttouchesthe
-axishere.Butwhathappenswhen
24
0?Thentherearenoreal
solutionstotheequationasnorealsquarestogivethenegative
24
Fromthegraphicalpointof
viewthecurve
=2++liesentirelyaboveorbelowthe
-axis.-1123-1123Distinctrealroots
-11231234Repeatedrealroot
-11230.511.522.533.54Complexroots
Itisonlycomparativelyrecentlythatmathematicianshavebeencomfortablewiththeserootswhen
24
0DuringtheRenaissancethequadraticwouldhavebeenconsideredunsolvableoritsroots
wouldhavebeencalled
imaginary.
(Theterm‚imaginary™was
ÞrstusedbytheFrenchMathematician
RenéDescartes(1596-1650).Whilstheisknownmoreas
aphilosopher,Descartesmademanyimportant
contributionstomathematicsandhelpedfoundco-ordinategeometryŠhencethenamingofCartesian
co-ordinates.)Ifweimagine
1toexist,andthatitbehaves(addsandmultiplies)muchthesameas
othernumbersthenthetworootsofthequadraticcanbewrittenintheform
=±1(2)where=2and=422arerealnumbers.
ThesehandoutsareproducedbyRichardEarl,whoistheSchoolsLiaisonandAccessO
cerformathematics,statistics
andcomputerscienceatOxfordUniversity.Anycomments,suggestionsorrequestsforothermaterialarewelcomeat
earl@maths.ox.ac.uk
Please note all content on this page was automatically generated via our AI-based algorithm (BishopKingdom ID: 1hfPu7w9q0O36lVhLmgJ). Please let us know if you find any errors.