
MATLAB Functions Search: Help Desk

ode45, ode23, ode113, ode15s, ode23s

Purpose

Solve differential equations

Syntax

[T,Y] = solver('F',tspan,y0)
[T,Y] = solver('F',tspan,y0,options)
[T,Y] = solver('F',tspan,y0,options,p1,p2...)
[T,Y,TE,YE,IE] = solver('F',tspan,y0,options)
[T,X,Y] = solver('model',tspan,y0,options,ut,p1,p2,...)

Arguments

F

Name of the ODE file, a MATLAB function of t and y returning a column vector. All
solvers can solve systems of equations in the form . ode15s and ode23s
can both solve equations of the form

 . Only ode15s can solve equations in the form

 . For information about ODE file syntax, see the odefile reference
page.

tspan
A vector specifying the interval of integration [t0 tfinal]. To obtain solutions at
specific times (all increasing or all decreasing), use tspan = [t0,t1, ..., tfinal].

y0 A vector of initial conditions.

options
Optional integration argument created using the odeset function. See odeset for
details.

p1,p2... Optional parameters to be passed to F.

T,Y Solution matrix Y, where each row corresponds to a time returned in column vector T.

Description

[T,Y] = solver('F',tspan,y0) with tspan = [t0 tfinal] integrates the system of differential
equations y' = F(t,y) from time t0 to tfinal with initial conditions y0. 'F' is a string containing the

1 of 7 12/31/98 6:36 AM

wysiwyg://1/file:/F|/HELP/TECHDOC/REF/ODE45.HTML

name of an ODE file. Function F(t,y) must return a column vector. Each row in solution array y
corresponds to a time returned in column vector t. To obtain solutions at the specific times t0, t1, ...,
tfinal (all increasing or all decreasing), use tspan = [t0 t1 ... tfinal].

[T,Y] = solver('F',tspan,y0,options) solves as above with default integration parameters
replaced by property values specified in options, an argument created with the odeset function (see
odeset for details). Commonly used properties include a scalar relative error tolerance RelTol (1e-3 by
default) and a vector of absolute error tolerances AbsTol (all components 1e-6 by default).

[T,Y] = solver('F',tspan,y0,options,p1,p2...) solves as above, passing the additional
parameters p1,p2... to the M-file F, whenever it is called. Use options = [] as a place holder if no
options are set.

[T,Y,TE,YE,IE] = solver('F',tspan,y0,options) with the Events property in options set to
'on', solves as above while also locating zero crossings of an event function defined in the ODE file. The
ODE file must be coded so that F(t,y,'events') returns appropriate information. See odefile for
details. Output TE is a column vector of times at which events occur, rows of YE are the corresponding
solutions, and indices in vector IE specify which event occurred.

When called with no output arguments, the solvers call the default output function odeplot to plot the
solution as it is computed. An alternate method is to set the OutputFcn property to 'odeplot'. Set the
OutputFcn property to 'odephas2' or 'odephas3' for two- orthree-dimensional phase plane plotting.
See odefile for details.

For the stiff solvers ode15s and ode23s, the Jacobian matrix is critical to reliability and efficiency
so there are special options. Set JConstant to 'on' if is constant. Set Vectorized to 'on' if
the ODE file is coded so that F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2) ...]. Set Jattern to
'on' if is a sparse matrix and the ODE file is coded so that
F([],[],'jpattern') returns a sparsity pattern matrix of 1's and 0's showing the nonzeros of .
Set Jacobian to 'on' if the ODE file is coded so that
F(t,y,'jacobian') returns .

Both ode15s and ode23s can solve problems

 with a constant mass matrix M that is nonsingular and (usually) sparse. Set Mass to
'on' if the ODE file is coded so that F([],[],'mass') returns M (see fem2ode). Only ode15s can
solve problems

 with a time-dependent mass matrix M(t) that is nonsingular and (usually) sparse. Set
Mass to 'on' if the ODE file is coded so that F(t,[],'mass') returns (see fem1ode). For ode15s
set MassConstant to 'on' if M is constant.

2 of 7 12/31/98 6:36 AM

wysiwyg://1/file:/F|/HELP/TECHDOC/REF/ODE45.HTML

Solver Problem Type
Order of
Accuracy

When to Use

ode45 Nonstiff Medium
Most of the time. This should be the first solver
you try.

ode23 Nonstiff Low
If using crude error tolerances or solving
moderately stiff problems.

ode113 Nonstiff Low to high
If using stringent error tolerances or solving a
computationally intensive ODE file.

ode15s Stiff Low to medium
If ode45 is slow (stiff systems) or there is a mass
matrix.

ode23s Stiff Low
If using crude error tolerances to solve stiff
systems or there is a constant mass matrix.

The algorithms used in the ODE solvers vary according to order of accuracy [5] and the type of systems
(stiff or nonstiff) they are designed to solve. See Algorithms on page 2-473 for more details.

It is possible to specify tspan, y0 and options in the ODE file (see odefile). If tspan or y0 is empty,
then the solver calls the ODE file:

[tspan,y0,options] = F([],[],'init')

to obtain any values not supplied in the solver's argument list. Empty arguments at the end of the call list
may be omitted. This permits you to call the solvers with other syntaxes such as:

[T,Y] = solver('F')
[T,Y] = solver('F',[],y0)
[T,Y] = solver('F',tspan,[],options)
[T,Y] = solver('F',[],[],options)

Integration parameters (options) can be specified both in the ODE file and on the command line. If an
option is specified in both places, the command line specification takes precedence. For information about
constructing an ODE file, see the odefile reference page.

Options

Different solvers accept different parameters in the options list. For more information, see odeset and
Using MATLAB .

3 of 7 12/31/98 6:36 AM

wysiwyg://1/file:/F|/HELP/TECHDOC/REF/ODE45.HTML

Parameters ode45 ode23 ode113 ode115s ode23s

RelTol, AbsTol

OutputFcn, OutputSel,
Refine, Stats

Events

MaxStep, InitialStep

JConstant, Jacobian,
JPattern, Vectorized -- -- --

Mass
MassConstant

--
--

--
--

--
-- --

MaxOrder, BDF -- -- -- --

Examples

Example 1. An example of a nonstiff system is the system of equations describing the motion of a rigid
body without external forces:

To simulate this system, create a function M-file rigid containing the equations:

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we will change the error tolerances with the odeset command and solve on a time
interval of [0 12] with initial condition vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[t,y] = ode45('rigid',[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution:

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

4 of 7 12/31/98 6:36 AM

wysiwyg://1/file:/F|/HELP/TECHDOC/REF/ODE45.HTML

Example 2. An example of a stiff system is provided by the van der Pol equations governing relaxation
oscillation. The limit cycle has portions where the solution components change slowly and the problem is
quite stiff, alternating with regions of very sharp change where it is not stiff.

To simulate this system, create a function M-file vdp1000 containing the equations:

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute tolerances
(1e-3 and 1e-6, respectively) and solve on a time interval of [0 3000] with initial condition vector [2 0]
at time 0.

[T,Y] = ode15s('vdp1000',[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution:

plot(T,Y(:,1),'-o'):

5 of 7 12/31/98 6:36 AM

wysiwyg://1/file:/F|/HELP/TECHDOC/REF/ODE45.HTML

Algorithms

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step solver
- in computing y(tn), it needs only the solution at the immediately preceding time point, y(tn-1). In
general, ode45 is the best function to apply as a "first try" for most problems. [1]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It may be
more efficient than ode45 at crude tolerances and in the presence of moderate stiffness. Like ode45,
ode23 is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more efficient than ode45
at stringent tolerances and when the ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver - it normally needs the solutions at several preceding time points to compute the current
solution. [3]

The above algorithms are intended to solve non-stiff systems. If they appear to be unduly slow, try using
one of the stiff solvers (ode15s and ode23s) instead.

ode15s is a variable order solver based on the numerical differentiation formulas, NDFs. Optionally, it
uses the backward differentiation formulas, BDFs (also known as Gear's method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. If you suspect that a problem is stiff or if ode45 has
failed or was very inefficient, try ode15s. [7]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a one-step solver, it may be
more efficient than ode15s at crude tolerances. It can solve some kinds of stiff problems for which
ode15s is not effective. [7]

See Also

odeset, odeget, odefile

6 of 7 12/31/98 6:36 AM

wysiwyg://1/file:/F|/HELP/TECHDOC/REF/ODE45.HTML

References

[1] Dormand, J. R. and P. J. Prince, "A family of embedded Runge-Kutta formulae," J. Comp. Appl.
Math., Vol. 6, 1980, pp 19-26.

[2] Bogacki, P. and L. F. Shampine, "A 3(2) pair of Runge-Kutta formulas,"
Appl. Math. Letters, Vol. 2, 1989, pp 1-9.

[3] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary Differential Equations: the
Initial Value Problem, W. H. Freeman, San Francisco, 1975.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations,
Prentice-Hall, New Jersey, 1977.

[5] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New
York, 1994.

[6] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall, New Jersey,
1989.

[7] Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," (to appear in SIAM Journal on
Scientific Computing, Vol. 18-1, 1997).

[Previous | Help Desk | Next]

7 of 7 12/31/98 6:36 AM

wysiwyg://1/file:/F|/HELP/TECHDOC/REF/ODE45.HTML

