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1.1. WHERE DID THIS BOOK COME FROM? 9

The purpose of this book is to help you learn R from the ground-up.

1.1 Where did this book come from?

Let me make something very, very clear…

I did not write this book.

This whole story started in the Summer of 2015. I was taking a late night swim on the Bodensee in Konstanz
and saw a rusty object sticking out of the water. Upon digging it out, I realized it was an ancient usb-stick
with the word YaRrr inscribed on the side. Intrigued, I brought it home and plugged it into my laptop. Inside
the stick, I found a single pdf file written entirely in pirate-speak. After watching several pirate movies, I
learned enough pirate-speak to begin translating the text to English. Sure enough, the book turned out to
be an introduction to R called The Pirate’s Guide to R.

This book clearly has both massive historical and pedagogical significance. Most importantly, it turns out
that pirates were programming in R well before the earliest known advent of computers. Of slightly less
significance is that the book has turned out to be a surprisingly up-to-date and approachable introductory
text to R. For both of these reasons, I felt it was my duty to share the book with the world.

If you or spot any typos or errors, or have any recommendations for future versions of the book, please write
me at YaRrr.Book@gmail.com or tweet me @YaRrrBook.

1.2 Who is this book for?

While this book was originally written for pirates, I think that anyone who wants to learn R can benefit
from this book. If you haven’t had an introductory course in statistics, some of the later statistical concepts
may be difficult, but I’ll try my best to add brief descriptions of new topics when necessary. Likewise, if R is
your first programming language, you’ll likely find the first few chapters quite challenging as you learn the
basics of programming. However, if R is your first programming language, that’s totally fine as what you
learn here will help you in learning other languages as well (if you choose to). Finally, while the techniques
in this book apply to most data analysis problems, because my background is in experimental psychology I
will cater the course to solving analysis problems commonly faced in psychological research.

What this book is

This book is meant to introduce you to the basic analytical tools in R, from basic coding and analyses, to
data wrangling, plotting, and statistical inference.

What this book is not

This book does not cover any one topic in extensive detail. If you are interested in conducting analyses or
creating plots not covered in the book, I’m sure you’ll find the answer with a quick Google search!

1.3 Why is R so great?

As you’ve already gotten this book, you probably already have some idea why R is so great. However, in
order to help prevent you from giving up the first time you run into a programming wall, let me give you a
few more reasons:

1. R is 100% free and as a result, has a huge support community. Unlike SPSS, Matlab, Excel and JMP,
R is, and always will be completely free. This doesn’t just help your wallet - it means that a huge
community of R programmers will constantly develop an distribute new R functionality and packages
at a speed that leaves all those other packages in the dust! Unlike Fight Club, the first rule of R is “Do
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talk about R!” The size of the R programming community is staggering. If you ever have a question
about how to implement something in R, a quick Poogle1 search will lead you to your answer virtually
every single time.

2. R is the present, and future of statistical programming. To illustrate this, look at the following three
figures. These are Google trend searches for three terms: R Programming, Matlab, and SPSS. Try and
guess which one is which.

3. R is incredibly versatile. You can use R to do everything from calculating simple summary statistics,
to performing complex simulations to creating gorgeous plots like the chord diagram on the right. If
you can imagine an analytical task, you can almost certainly implement it in R.

4. Using RStudio, a program to help you write R code, You can easily and seamlessly combine R code,
analyses, plots, and written text into elegant documents all in one place using Sweave (R and Latex) or
RMarkdown. In fact, I translated this entire book (the text, formatting, plots, code…yes, everything) in
RStudio using Sweave. With RStudio and Sweave, instead of trying to manage two or three programs,
say Excel, Word and (sigh) SPSS, where you find yourself spending half your time copying, pasting
and formatting data, images and test, you can do everything in one place so nothing gets misread,
mistyped, or forgotten.

circlize::chordDiagram(matrix(sample(10),
nrow = 2, ncol = 5))

5. Analyses conducted in R are transparent, easily shareable, and reproducible. If you ask an SPSS
user how they conducted a specific analyses, they will either A) Not remember, B) Try (nervously)
to construct an analysis procedure on the spot that makes sense - which may or may not correspond
to what they actually did months or years ago, or C) Ask you what you are doing in their house. I
used to primarily use SPSS, so I speak from experience on this. If you ask an R user (who uses good
programming techniques!) how they conducted an analysis, they should always be able to show you
the exact code they used. Of course, this doesn’t mean that they used the appropriate analysis or
interpreted it correctly, but with all the original code, any problems should be completely transparent!

6. And most importantly of all, R is the programming language of choice for pirates.

1.4 Why R is like a relationship…

Yes, R is very much like a relationship. Like relationships, there are two major truths to R programming:

1. There is nothing more frustrating than when your code does not work

2. There is nothing more satisfying than when your code does work!

Anything worth doing, from losing weight to getting a degree, takes time. Learning R is no different.
Especially if this is your first experience programming, you are going to experience a lot of headaches when

1I am in the process of creating Poogle - Google for Pirates. Kickstarter page coming soon...
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Figure 1.1: A super cool chord diagram from the circlize package

you get started. You will run into error after error and pound your fists against the table screaming: “WHY
ISN’T MY CODE WORKING?!?!? There must be something wrong with this stupid software!!!” You will
spend hours trying to find a bug in your code, only to find that - frustratingly enough, you had had an extra
space or missed a comma somewhere. You’ll then wonder why you ever decided to learn R when (::sigh::)
SPSS was so “nice and easy.”

Fun Fact! SPSS stands for “Shitty Piece of Shitty Shit”. True story.

This is perfectly normal! Don’t get discouraged and DON’T GO BACK TO SPSS! That would be quitting
on exercise altogether because you had a tough workout.

Trust me, as you gain more programming experience, you’ll experience fewer and fewer bugs (though they’ll
never go away completely). Once you get over the initial barriers, you’ll find yourself conducting analyses
much, much faster than you ever did before.

1.5 R resources

1.5.1 R Cheatsheets

Over the course of this book, you will be learning lots of new functions. Wouldn’t it be nice if someone
created a Cheatsheet / Dictionary of many common R functions? Yes it would, and thankfully several
friendly R programmers have done just that. Below is a table of some of them that I recommend. I highly
encourage you to print these out and start highlighting functions as you learn them!
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Figure 1.2: Yep, R will become both your best friend and your worst nightmare. The bad times will make
the good times oh so much sweeter.



1.5. R RESOURCES 13

Figure 1.3: When you first meet R, it will look so fugly that you’ll wonder if this is all some kind of sick joke.
But trust me, once you learn how to talk to it, and clean it up a bit, all your friends will be crazy jealous.
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Figure 1.4: The R reference card written by Tom Short is absolutely indispensable!
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CheatSheet Link
R Basics by Tom Short https://cran.

r-project.org/
doc/contrib/
Short-refcard.
pdf

R Basics by Mhairi McNeill http://github.
com/rstudio/
cheatsheets/
raw/master/
source/pdfs/
base-r.pdf

Advanced R by Arianne Colton and Sean
Chen

hhttps://www.rstudio.com/wp-
content/uploads/2016/02/advancedR.pdf

Plotting https://www.
rstudio.com/
wp-content/
uploads/
2016/10/
how-big-is-your-graph.
pdf

1.5.2 Getting R help and inspiration online

Here are some great resources for R help and inspiration:

Site Description
www.google.com If you haven’t heard of it, Google is this amazing

site that gives you access to all R knowledge that
has ever existed. Just ask it an R question and
99.9% of the time it will give you the answer!

www.r-bloggers.com R bloggers is my go-to place to discover the latest
and greatest with R.

blog.revolutionanalytics.com Revolution analytics always has great R related
material.

www.kaggle.com Kaggle is a really cool website that posts data
analysis challenges that anyone can try to solve. It
also contains a wide range of real-world datasets
and tutorials.

1.5.3 Other R books

There are many, many excellent (non-pirate) books on R, some of which are available online for free. Here
are some that I highly recommend:

Book Description
R for Data Science by Garrett
Grolemund and Hadley Wickham

The best book to learn the latest tools for elegantly
doing data science.

The R Book by Michael Crawley As close to an R bible as you can get.

https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://github.com/rstudio/cheatsheets/raw/master/source/pdfs/base-r.pdf
http://github.com/rstudio/cheatsheets/raw/master/source/pdfs/base-r.pdf
http://github.com/rstudio/cheatsheets/raw/master/source/pdfs/base-r.pdf
http://github.com/rstudio/cheatsheets/raw/master/source/pdfs/base-r.pdf
http://github.com/rstudio/cheatsheets/raw/master/source/pdfs/base-r.pdf
http://github.com/rstudio/cheatsheets/raw/master/source/pdfs/base-r.pdf
https://www.rstudio.com/wp-content/uploads/2016/02/advancedR.pdf
https://www.rstudio.com/wp-content/uploads/2016/02/advancedR.pdf
https://www.rstudio.com/wp-content/uploads/2016/10/how-big-is-your-graph.pdf
https://www.rstudio.com/wp-content/uploads/2016/10/how-big-is-your-graph.pdf
https://www.rstudio.com/wp-content/uploads/2016/10/how-big-is-your-graph.pdf
https://www.rstudio.com/wp-content/uploads/2016/10/how-big-is-your-graph.pdf
https://www.rstudio.com/wp-content/uploads/2016/10/how-big-is-your-graph.pdf
https://www.rstudio.com/wp-content/uploads/2016/10/how-big-is-your-graph.pdf
https://www.rstudio.com/wp-content/uploads/2016/10/how-big-is-your-graph.pdf
http://www.google.com
http://www.r-bloggers.com
http://blog.revolutionanalytics.com
http://www.kaggle.com
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/
https://www.amazon.com/R-Book-Michael-J-Crawley/dp/0470973927/ref=sr_1_1?ie=UTF8&qid=1487759048&sr=8-1&keywords=the+r+book
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Book Description
Advanced R by Hadley Wickham A truly advanced book for expert R users,

especially those with a programming background.
Hadley Wickham is the R guru.

Discovering Statistics with R by Field,
Miles and Field

A classic text focusing on the theory and practice
of statistical analysis with R

Applied Predictive Modeling by Kuhn
and Johnson

A great text specializing in statistical learning aka
predictive modeling aka machine learning with R.

1.6 Who am I?

My name is Nathaniel – not Nathan…not Nate…and definitely not Nat. I am a psychologist with a background
in statistics and judgment and decision making. You can find my R (and non-R) related musings at http:
//ndphillips.github.io

1.6.1 Acknowledgements

I am deeply indebted to many people for either directly or indirectly helping me make this book happen. I
would especially like to thank Captain Thomas Moore and Captain Wei Linn for my early training in both
statistics and R, Captain Hansjoerg Neth for teaching me LaTeX and ultimately inspiring me to write (I
mean translate) this book, and Captain Dirk Wulff for teaching me almost everything I know about R. If I
hadn’t been lucky enough to meet just one of these people, this book would not exist.

1.7 Please Contribute!

I am grateful for comments, questions, bug reports, and requests to future editions of the book! If there’s
anything you’d like to add or share, please contact me via email at yarrr.book@gmail.com, or if you are famil-
iar with GitHub, post an issue at https://github.com/ndphillips/ThePiratesGuideToR/issues. Contributers
will be added to the R pirate

http://adv-r.had.co.nz/
https://www.amazon.com/Discovering-Statistics-Using-Andy-Field/dp/1446200469/ref=sr_1_2?ie=UTF8&qid=1487759316&sr=8-2&keywords=statistics+with+r
https://www.amazon.com/Discovering-Statistics-Using-Andy-Field/dp/1446200469/ref=sr_1_2?ie=UTF8&qid=1487759316&sr=8-2&keywords=statistics+with+r
https://www.amazon.com/Applied-Predictive-Modeling-Max-Kuhn/dp/1461468485/ref=sr_1_1?ie=UTF8&qid=1487759459&sr=8-1&keywords=applied+predictive+modeling
https://www.amazon.com/Applied-Predictive-Modeling-Max-Kuhn/dp/1461468485/ref=sr_1_1?ie=UTF8&qid=1487759459&sr=8-1&keywords=applied+predictive+modeling
http://ndphillips.github.io
http://ndphillips.github.io
https://www.grinnell.edu/users/mooret
http://www.math.ohiou.edu/people/directory/linwei
https://www.spds.uni-konstanz.de/hans-neth
https://psycho.unibas.ch/fakultaet/personen/profil/person/wulff/
mailto:yarrr.book@gmail.com
https://github.com/ndphillips/ThePiratesGuideToR/issues
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Figure 1.5: Like a pirate, I work best with a mug of beer within arms’ reach.
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Chapter 2

Getting Started

2.1 Installing Base-R and RStudio

To use R, we’ll need to download two software packages: Base-R, and RStudio. Base-R is the basic
software which contains the R programming language. RStudio is software that makes R programming
easier. Of course, they are totally free and open source.

2.1.1 Check for version updates

R and RStudio have been around for several years – however, they are constantly being updated with new
features and bug-fixes. At the time that I am writing this sentence (09:48, Thursday, 23 February, 2017),
the latest version of Base-R is 3.3.2 “Sincere Pumpkin Patch” (the versions all have funny names) which was
released on 31 October, 2016, and the latest version of RStudio is 1.0.136 released on 21 December, 2016.
If you have a (much) older version of R or RStudio currently installed on your computer, then you should
update both R and RStudio to the newest version(s) by installing them again from scratch. If you don’t,
then some of the code and packages in this book might not work.

To install Base-R, click on one of the following links and follow the instructions.

Operating System Link
Windows http://cran.r-project.org/bin/windows/base/

19
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Operating System Link
Mac http://cran.r-project.org/bin/macosx/

Once you’ve installed base-R on your computer, try opening it. When you do you should see a screen like
the one in Figure 2.1.1 (this is the Mac version). As you can see, base R is very much bare-bones software.
It’s kind of the equivalent of a simple text editor that comes with your computer.

\begin{figure}

{

}

\caption{{Here is how the base R application looks. While you can use the base R application alone, most
people I know use RStudio – software that helps you to write and use R code more efficiently!} \end{figure}

While you can do pretty much everything you want within base-R, you’ll find that most people these days
do their R programming in an application called RStudio. RStudio is a graphical user interface (GUI)-like
interface for R that makes programming in R a bit easier. In fact, once you’ve installed RStudio, you’ll
likely never need to open the base R application again. To download and install RStudio (around 40mb),

go to one of the links above and follow the instructions.

Operating System Link
All http://www.rstudio.com/products/rstudio/download/

http://cran.r-project.org/bin/macosx/
http://www.rstudio.com/products/rstudio/download/
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Let’s go ahead and boot up RStudio and see how she looks!

2.2 The four RStudio Windows

When you open RStudio, you’ll see the following four windows (also called panes) shown in in Figure 2.1.
However, your windows might be in a different order that those in Figure 2.1. If you’d like, you can change
the order of the windows under RStudio preferences. You can also change their shape by either clicking the
minimize or maximize buttons on the top right of each panel, or by clicking and dragging the middle of the

borders of the windows.

Now, let’s see what each window does in detail.

2.2.1 Source - Your notepad for code

The source pane is where you create and edit “R Scripts” - your collections of code. Don’t worry, R scripts
are just text files with the “.R” extension. When you open RStudio, it will automatically start a new

Untitled script. Before you start typing in an untitled R script, you should always save the file under a new
file name (like, “2015PirateSurvey.R”). That way, if something on your computer crashes while you’re

working, R will have your code waiting for you when you re-open RStudio.

You’ll notice that when you’re typing code in a script in the Source panel, R won’t actually evaluate the
code as you type. To have R actually evaluate your code, you need to first ‘send’ the code to the Console

(we’ll talk about this in the next section).

There are many ways to send your code from the Source to the console. The slowest way is to copy and
paste. A faster way is to highlight the code you wish to evaluate and clicking on the “Run” button on the
top right of the Source. Alternatively, you can use the hot-key “Command + Return” on Mac, or “Control

+ Enter” on PC to send all highlighted code to the console.

2.2.2 Console: R’s Heart

The console is the heart of R. Here is where R actually evaluates code. At the beginning of the console
you’ll see the character >. This is a prompt that tells you that R is ready for new code. You can type code
directly into the console after the > prompt and get an immediate response. For example, if you type 1+1

into the console and press enter, you’ll see that R immediately gives an output of 2.
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Figure 2.1: The four panes of RStudio.

1+1
## [1] 2

Try calculating 1+1 by typing the code directly into the console - then press Enter. You should see the
result [1] 2. Don’t worry about the [1] for now, we’ll get to that later. For now, we’re happy if we just see
the 2. Then, type the same code into the Source, and then send the code to the Console by highlighting
the code and clicking the “Run” button on the top right hand corner of the Source window. Alternatively,

you can use the hot-key “Command + Return” on Mac or “Control + Enter” on Windows.

Tip: Try to write most of your code in a document in the Source. Only type directly into the Console to
de-bug or do quick analyses.

So as you can see, you can execute code either by running it from the Source or by typing it directly into
the Console. However, 99% most of the time, you should be using the Source rather than the Console. The
reason for this is straightforward: If you type code into the console, it won’t be saved (though you can look
back on your command History). And if you make a mistake in typing code into the console, you’d have to
re-type everything all over again. Instead, it’s better to write all your code in the Source. When you are

ready to execute some code, you can then send “Run” it to the console.

2.2.3 Environment / History

The Environment tab of this panel shows you the names of all the data objects (like vectors, matrices, and
dataframes) that you’ve defined in your current R session. You can also see information like the number of

observations and rows in data objects. The tab also has a few clickable actions like “Import Dataset”
which will open a graphical user interface (GUI) for important data into R. However, I almost never look

at this menu.
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Figure 2.2: The Source contains all of your individual R scripts. The code won’t be evaluated until you send
it to the Console.
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Figure 2.3: The console the calculation heart of R. All of your code will (eventually) go through here.

Figure 2.4: The environment panel shows you all the objects you have defined in your current workspace.
You’ll learn more about workspaces in Chapter 7.
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The History tab of this panel simply shows you a history of all the code you’ve previously evaluated in the
Console. To be honest, I never look at this. In fact, I didn’t realize it was even there until I started writing

this tutorial.

As you get more comfortable with R, you might find the Environment / History panel useful. But for now
you can just ignore it. If you want to declutter your screen, you can even just minimize the window by

clicking the minimize button on the top right of the panel.

2.2.4 Files / Plots / Packages / Help

The Files / Plots / Packages / Help panel shows you lots of helpful information. Let’s go through each tab
in detail:

1. Files - The files panel gives you access to the file directory on your hard drive. One nice feature of the
“Files” panel is that you can use it to set your working directory - once you navigate to a folder you
want to read and save files to, click “More” and then “Set As Working Directory.” We’ll talk about
working directories in more detail soon.

2. Plots - The Plots panel (no big surprise), shows all your plots. There are buttons for opening the plot
in a separate window and exporting the plot as a pdf or jpeg (though you can also do this with code
using the pdf() or jpeg() functions.)

Let’s see how plots are displayed in the Plots panel. Run the code on the right to display a histogram of
the weights of chickens stored in the ChickWeight dataset. When you do, you should see a plot similar to

the one in Figure 2.5 show up in the Plots panel.
hist(x = ChickWeight$weight,

main = "Chicken Weights",
xlab = "Weight",
col = "skyblue",
border = "white")

3. Packages - Shows a list of all the R packages installed on your harddrive and indicates whether or
not they are currently loaded. Packages that are loaded in the current session are checked while those
that are installed but not yet loaded are unchecked. We’ll discuss packages in more detail in the next
section.

4. Help - Help menu for R functions. You can either type the name of a function in the search window,
or use the code ?function.name to search for a function with the name function.name

?hist # How does the histogram function work?
?t.test # What about a t-test?

2.3 Packages

When you download and install R for the first time, you are installing the Base R software. Base R will
contain most of the functions you’ll use on a daily basis like mean() and hist(). However, only functions
written by the original authors of the R language will appear here. If you want to access data and code
written by other people, you’ll need to install it as a package. An R package is simply a bunch of data,

from functions, to help menus, to vignettes (examples), stored in one neat package.

A package is like a light bulb. In order to use it, you first need to order it to your house (i.e.; your
computer) by installing it. Once you’ve installed a package, you never need to install it again. However,
every time you want to actually use the package, you need to turn it on by loading it. Here’s how to do it.
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Figure 2.5: The plot panel contains all of your plots, like this histogram of the distribution of chicken weights.

Figure 2.6: An R package is light a lightbulb. First you need to order it with install.packages(). Then, every
time you want to use it, you need to turn it on with library()
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Figure 2.7: CRAN (Comprehensive R Archive Network) is the main source of R packages

Figure 2.8: When you install a new package, you’ll see some random text like this you the download progress.
You don’t need to memorize this.

2.3.1 Installing a new package

Installing a package simply means downloading the package code onto your personal computer. There are
two main ways to install new packages. The first, and most common, method is to download them from

the Comprehensive R Archive Network (CRAN). CRAN is the central repository for R packages. To install
a new R package from CRAN, you can simply run the code install.packages("name"), where “name” is
the name of the package. For example, to download the yarrr package, which contains several data sets

and functions we will use in this book, you should run the following:
# Install the yarrr package from CRAN
# You only need to install a package once!
install.packages("yarrr")

When you run install.packages("name") R will download the package from CRAN. If everything works,
you should see some information about where the package is being downloaded from, in addition to a

progress bar.

Like ordering a light bulb, once you’ve installed a package on your computer you never need to install it
again (unless you want to try to install a new version of the package). However, every time you want to use

it, you need to turn it on by loading it.

2.3.2 Loading a package

Once you’ve installed a package, it’s on your computer. However, just because it’s on your computer
doesn’t mean R is ready to use it. If you want to use something, like a function or dataset, from a package
you always need to load the package in your R session first. Just like a light bulb, you need to turn it on to

use it!

To load a package, you use the library() function. For example, now that we’ve installed the yarrr
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package, we can load it with library("yarrr"):
# Load the yarrr package so I can use it!
# You have to load a package in every new R session!
library("yarrr")

Now that you’ve loaded the yarrr package, you can use any of its functions! One of the coolest functions in
this package is called pirateplot(). Rather than telling you what a pirateplot is, let’s just make one. Run
the following code chunk to make your own pirateplot. Don’t worry about the specifics of the code below,
you’ll learn more about how all this works later. For now, just run the code and marvel at your pirateplot.
# Make a pirateplot using the pirateplot() function
# from the yarrr package!

pirateplot(formula = weight ~ Time,
data = ChickWeight,
pal = "xmen")
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There is one way in R to temporarily load a package without using the library() function. To do this,
you can simply use the notation package::function notation. This notation simply tells R to load the
package just for this one chunk of code. For example, I could use the pirateplot function from yarrr

package as follows:
# Use the pirateplot() function without loading the yarrr package first
yarrr::pirateplot(formula = weight ~ Diet,

data = ChickWeight)
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Again, you can think about the package::function method as a way to temporarily loading a package for
a single line of code. One benefit of using the package::function notation is that it’s immediately clear
to anyone reading the code which package contains the function. However, a drawback is that if you are
using a function from a package often, it forces you to constantly retype the package name. You can use

whichever method makes sense for you.

2.4 Reading and writing Code

2.4.1 Code Chunks

In this book, R code is (almost) always presented in a separate gray box like this one:
# A code chunk

# Define a vector a as the integers from 1 to 5
a <- 1:5

# Print a
a
## [1] 1 2 3 4 5

# What is the mean of a?
mean(a)
## [1] 3

This is called a code chunk. You should always be able to copy and paste code chunks directly into R. If
you copy a chunk and it does not work for you, it is most likely because the code refers to a package,

function, or object that I defined in a previous chunk. If so, read back and look for a previous chunk that
contains the missing definition.



30 CHAPTER 2. GETTING STARTED

2.4.2 Comments with #

Lines that begin with # are comments. If you evaluate any code that starts with #, R will just ignore that
line. In this book, comments will be either be literal comments that I write directly to explain code, or
they will be output generated automatically from R. For example, in the code chunk below, you see lines

starting with ##. These are the output from the previous line(s) of code. When you run the code yourself,
you should see the same output in your console.

# This is a comment I wrote

1 + 2
## [1] 3

# The line above (## [1] 3) is the output from the previous code that has been 'commented out'

2.4.3 Element numbers in output [1]

The output you see will often start with one or more number(s) in brackets such as [1]. This is just a visual
way of telling you where the numbers occur in the output. For example, in the code below, I will print a

long vector containing the multiples of 2 from 0 to 100:
seq(from = 0, to = 100, by = 2)
## [1] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
## [18] 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66
## [35] 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

As you can see, the first line of the output starts with ## [1], and the next two lines start with [18] and
[35]. This is just telling you that 0 is the [1]st element, 34 is the [18]th element, and 68 is the [35]th
element. Sometimes this information will be helpful, but most of the time you can just ignore it.

2.5 Debugging

When you are programming, you will always, and I do mean always, make errors (also called bugs) in your
code. You might misspell a function, include an extra comma, or some days…R just won’t want to work

with you (again, see section Why R is like a Relationship).

Debugging will always be a challenge. However, over time you’ll learn which bugs are the most common
and get faster and faster at finding and correcting them.

Here are the most common bugs you’ll run into as you start your R journey.

2.5.1 R is not ready (>)

Another very common problem occurs when R does not seem to be responding to your code. That is, you
might run some code like mean(x) expecting some output, but instead, nothing happens. This can be very
frustrating because, rather than getting an error, just nothing happens at all. The most common reason for
this is because R isn’t ready for new code, instead, it is waiting for you to finish code you started earlier,

but never properly finished.

Think about it this way, R can be in one of two states: it is either Ready (>) for new code, or it is
Waiting (+) for you to finish old code. To see which state R is in, all you have to do is look at the symbol
on the console. The > symbol means that R is Ready for new code – this is usually what you want to see.
The + symbol means that R is Waiting for you to (properly) finish code you started before. If you see the +
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Figure 2.9: To turn R from a Waiting (+) state to a Ready (>) state, just hit Escape.

symbol, then no matter how much new code you write, R won’t actually evaluate it until you finish the
code you started before.

Thankfully there is an easy solution to this problem (See Figure 2.9): Just hit the escape key on your
keyboard. This will cancel R’s waiting state and make it Ready!

2.5.2 Misspelled object or function

If you spell an object or function incorrectly, you’ll receive an error like Error: could not find function
or Error: object 'x' not found.

In the code below, I’ll try to take the mean of a vector data, but I will misspell the function mean()
data <- c(1, 4, 3, 2, 1)

# Misspelled function: should be mean(x), not meeen(x)
meeen(data)

Error: could not find function “meeen”

Now, I’ll misspell the object data as dta:
# Misspelled object: should be data, not dta
mean(dta)

Error: object ‘dta’ not found

R is case-sensitive, so if you don’t use the correct capitalization you’ll receive an error. In the code below,
I’ll use Mean() instead of the correct version mean()

# Capitalization is wrong: should be mean(), not Mean()
Mean(data)
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Error: could not find function “Mean”

Here is the correct version where both the object data and function mean() are correctly spelled:
# Correct: both the object and function are correctly spelled
mean(data)
## [1] 2.2

2.5.3 Punctuation problems

Another common error is having bad coding “punctuation”. By that, I mean having an extra space,
missing a comma, or using a comma (,) instead of a period (.). In the code below, I’ll try to create a vector

using periods instead of commas:
# Wrong: Using periods (.) instead of commas (,)
mean(c(1. 4. 2))

Error: unexpected numeric constant in “mean(c(1. 4.”

Because I used periods instead of commas, I get the above error. Here is the correct version
# Correct
mean(c(1, 4, 2))
## [1] 2.3

If you include an extra space in the middle of the name of an object or function, you’ll receive an error. In
the code below, I’ll accidentally write Chick Weight instead of ChickWeight:

# Wrong: Extra space in the ChickWeight object name
head(Chick Weight)

Error: unexpected symbol in “head(Chick Weight”

Because I had an extra space in the object name, I get the above error. Here is the correction:
# Correct:
head(ChickWeight)
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Jump In!

What’s the first exercise on the first day of pirate swimming lessons? While it would be cute if they all had
little inflatable pirate ships to swim around in – unfortunately this is not the case. Instead, those baby

pirates take a walk off their baby planks so they can get a taste of what they’re in for. Turns out, learning
R is the same way. Let’s jump in. In this chapter, you’ll see how easy it is to calculate basic statistics and
create plots in R. Don’t worry if the code you’re running doesn’t make immediate sense – just marvel at

how easy it is to do this in R!

In this section, we’ll analyze a dataset called…wait for it…pirates! The dataset contains data from a survey
of 1,000 pirates. The data is contained in the yarrr package, so make sure you’ve installed and loaded the

package:
# Install the yarrr package
install.packages('yarrr')

# Load the package
library(yarrr)

3.1 Exploring data

Next, we’ll look at the help menu for the pirates dataset using the question mark ?pirates. When you run
this, you should see a small help window open up in RStudio that gives you some information about the

dataset.
?pirates

First, let’s take a look at the first few rows of the dataset using the head() function. This will show you
the first few rows of the data.

# Look at the first few rows of the data
head(pirates)
## id sex age height weight headband college tattoos tchests parrots
## 2 2 male 31 209 106 yes JSSFP 9 11 0
## 793 793 male 25 209 104 yes CCCC 8 27 9
## 430 430 male 26 201 99 yes CCCC 4 7 1
## 292 292 male 29 201 102 yes CCCC 9 2 3
## 895 895 male 27 201 103 yes CCCC 12 1 1
## 409 409 male 28 201 97 yes CCCC 7 10 0
## favorite.pirate sword.type eyepatch sword.time beard.length

33
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Figure 3.1: Despite what you might find at family friendly waterparks – this is NOT how real pirate swimming
lessons look.

## 2 Jack Sparrow cutlass 0 1.1 21
## 793 Anicetus cutlass 1 1.1 16
## 430 Jack Sparrow cutlass 1 0.9 14
## 292 Jack Sparrow sabre 1 9.9 14
## 895 Hook cutlass 1 2.3 25
## 409 Jack Sparrow cutlass 1 1.2 15
## fav.pixar grogg
## 2 WALL-E 9
## 793 Monsters University 8
## 430 WALL-E 9
## 292 WALL-E 6
## 895 Brave 14
## 409 Inside Out 7

You can look at the names of the columns in the dataset with the names() function
# What are the names of the columns?
names(pirates)
## [1] "id" "sex" "age"
## [4] "height" "weight" "headband"
## [7] "college" "tattoos" "tchests"
## [10] "parrots" "favorite.pirate" "sword.type"
## [13] "eyepatch" "sword.time" "beard.length"
## [16] "fav.pixar" "grogg"

Finally, you can also view the entire dataset in a separate window using the View() function:
# View the entire dataset in a new window
View(pirates)
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3.2 Descriptive statistics

Now let’s calculate some basic statistics on the entire dataset. We’ll calculate the mean age, maximum
height, and number of pirates of each sex:

# What is the mean age?
mean(pirates$age)
## [1] 27

# What was the tallest pirate?
max(pirates$height)
## [1] 209

# How many pirates are there of each sex?
table(pirates$sex)
##
## female male other
## 464 490 46

Now, let’s calculate statistics for different groups of pirates. For example, the following code will use the
aggregate() function to calculate the mean age of pirates, separately for each sex.

# Calculate the mean age, separately for each sex
aggregate(formula = age ~ sex,

data = pirates,
FUN = mean)

## sex age
## 1 female 30
## 2 male 25
## 3 other 27

3.3 Plotting

Cool stuff, now let’s make a plot! We’ll plot the relationship between pirate’s height and weight using the
plot() function

# Create scatterplot
plot(x = pirates$height, # X coordinates

y = pirates$weight) # y-coordinates
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Now let’s make a fancier version of the same plot by adding some customization
# Create scatterplot
plot(x = pirates$height, # X coordinates

y = pirates$weight, # y-coordinates
main = 'My first scatterplot of pirate data!',
xlab = 'Height (in cm)', # x-axis label
ylab = 'Weight (in kg)', # y-axis label
pch = 16, # Filled circles
col = gray(.0, .1)) # Transparent gray
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Now let’s make it even better by adding gridlines and a blue regression line to measure the strength of the
relationship.

# Create scatterplot
plot(x = pirates$height, # X coordinates

y = pirates$weight, # y-coordinates
main = 'My first scatterplot of pirate data!',
xlab = 'Height (in cm)', # x-axis label
ylab = 'Weight (in kg)', # y-axis label
pch = 16, # Filled circles
col = gray(.0, .1)) # Transparent gray

grid() # Add gridlines

# Create a linear regression model
model <- lm(formula = weight ~ height,

data = pirates)

abline(model, col = 'blue') # Add regression to plot
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Scatterplots are great for showing the relationship between two continuous variables, but what if your
independent variable is not continuous? In this case, pirateplots are a good option. Let’s create a pirateplot
using the pirateplot() function to show the distribution of pirate’s age based on their favorite sword:

pirateplot(formula = age ~ sword.type,
data = pirates,
main = "Pirateplot of ages by favorite sword")
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Now let’s make another pirateplot showing the relationship between sex and height using a different
plotting theme and the "pony" color palette:

pirateplot(formula = height ~ sex, # Plot weight as a function of sex
data = pirates,
main = "Pirateplot of height by sex",
pal = "pony", # Use the info color palette
theme = 3) # Use theme 3
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The "pony" palette is contained in the piratepal() function. Let’s see where the "pony" palette comes
from…

# Show me the pony palette!
piratepal(palette = "pony",

plot.result = TRUE, # Plot the result
trans = .1) # Slightly transparent
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3.4 Hypothesis tests

Now, let’s do some basic hypothesis tests. First, let’s conduct a two-sample t-test to see if there is a
significant difference between the ages of pirates who do wear a headband, and those who do not:

# Age by headband t-test
t.test(formula = age ~ headband,

data = pirates,
alternative = 'two.sided')

##
## Welch Two Sample t-test
##
## data: age by headband
## t = 0.4, df = 100, p-value = 0.7
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.0 1.5
## sample estimates:
## mean in group no mean in group yes
## 28 27

With a p-value of 0.7259, we don’t have sufficient evidence say there is a difference in the men age of
pirates who wear headbands and those that do not.

Next, let’s test if there a significant correlation between a pirate’s height and weight using the cor.test()
function:

cor.test(formula = ~ height + weight,
data = pirates)
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##
## Pearson's product-moment correlation
##
## data: height and weight
## t = 80, df = 1000, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.92 0.94
## sample estimates:
## cor
## 0.93

We got a p-value of p < 2.2e-16, that’s scientific notation for p < .00000000000000016 – which is pretty
much 0. Thus, we’d conclude that there is a significant (positive) relationship between a pirate’s height and

weight.

Now, let’s do an ANOVA testing if there is a difference between the number of tattoos pirates have based
on their favorite sword

# Create tattoos model
tat.sword.lm <- lm(formula = tattoos ~ sword.type,

data = pirates)

# Get ANOVA table
anova(tat.sword.lm)
## Analysis of Variance Table
##
## Response: tattoos
## Df Sum Sq Mean Sq F value Pr(>F)
## sword.type 3 1588 529 54.1 <2e-16 ***
## Residuals 996 9743 10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Sure enough, we see another very small p-value of p < 2.2e-16, suggesting that the number of tattoos
pirate’s have are different based on their favorite sword.

3.5 Regression analysis

Finally, let’s run a regression analysis to see if a pirate’s age, weight, and number of tattoos (s)he has
predicts how many treasure chests he/she’s found:

# Create a linear regression model: DV = tchests, IV = age, weight, tattoos
tchests.model <- lm(formula = tchests ~ age + weight + tattoos,

data = pirates)

# Show summary statistics
summary(tchests.model)
##
## Call:
## lm(formula = tchests ~ age + weight + tattoos, data = pirates)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -33.30 -15.83 -6.86 8.41 119.97
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1908 7.1844 0.72 0.47
## age 0.7818 0.1344 5.82 8e-09 ***
## weight -0.0901 0.0718 -1.25 0.21
## tattoos 0.2540 0.2255 1.13 0.26
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24 on 996 degrees of freedom
## Multiple R-squared: 0.0406, Adjusted R-squared: 0.0377
## F-statistic: 14 on 3 and 996 DF, p-value: 5.75e-09

It looks like the only significant predictor of the number of treasure chests that a pirate has found is
his/her age. There does not seem to be significant effect of weight or tattoos.

3.6 Bayesian Statistics

Now, let’s repeat some of our previous analyses with Bayesian versions. First we’ll install and load the
BayesFactor package which contains the Bayesian statistics functions we’ll use:

# Install and load the BayesFactor package
install.packages('BayesFactor')
library(BayesFactor)

Now that the packages is installed and loaded, we’re good to go! Let’s do a Bayesian version of our earlier
t-test asking if pirates who wear a headband are older or younger than those who do not.

# Bayesian t-test comparing the age of pirates with and without headbands
ttestBF(formula = age ~ headband,

data = pirates)
## Bayes factor analysis
## --------------
## [1] Alt., r=0.707 : 0.12 ±0%
##
## Against denominator:
## Null, mu1-mu2 = 0
## ---
## Bayes factor type: BFindepSample, JZS

It looks like we got a Bayes factor of 0.12 which is strong evidence for the null hypothesis (that the mean
age does not differ between pirates with and without headbands)

3.7 Wasn’t that easy?!

Wait…wait…WAIT! Did you seriously just calculate descriptive statistics, a t-test, an ANOVA, and a
regression, create a scatterplot and a pirateplot, AND do both a Bayesian t-test and regression analysis.
Yup. Imagine how long it would have taken to explain how to do all that in SPSS. And while you haven’t
really learned how R works yet, I’d bet my beard that you could easily alter the previous code to do lots of
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other analyses. Of course, don’t worry if some or all of the previous code didn’t make sense. Soon…it will
all be clear.

Now that you’ve jumped in, let’s learn how to swim.



Chapter 4

The Basics

If you’re like most people, you think of R as a statistics program. However, while R is definitely the coolest,
most badass, pirate-y way to conduct statistics – it’s not really a program. Rather, it’s a programming

language that was written by and for statisticians. To learn more about the history of R…just…you
know…Google it.

In this chapter, we’ll go over the basics of the R language and the RStudio programming environment.

4.1 The command-line (Console)

R code, on its own, is just text. You can write R code in a new script within R or RStudio, or in any text
editor. Hell, you can write R code on Twitter if you want. However, just writing the code won’t do the

whole job – in order for your code to be executed (aka, interpreted) you need to send it to R’s
command-line interpreter. In RStudio, the command-line interpreter is called the Console.

In R, the command-line interpreter starts with the > symbol. This is called the prompt. Why is it called
the prompt? Well, it’s “prompting” you to feed it with some R code. The fastest way to have R evaluate
code is to type your R code directly into the command-line interpreter. For example, if you type 1+1 into

the interpreter and hit enter you’ll see the following
1+1
## [1] 2

Figure 4.1: Ross Ihaka and Robert Gentlemen. You have these two pirates to thank for creating R! You
might not think much of them now, but by the end of this book there’s a good chance you’ll be dressing up
as one of them on Halloween.

45
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Figure 4.2: Yep. R is really just a fancy calculator. This R programming device was found on a shipwreck
on the Bodensee in Germany. I stole it from a museum and made a pretty sweet plot with it. But I don’t
want to show it to you.

Figure 4.3: You can always type code directly into the command line to get an immediate response.



4.2. WRITING R SCRIPTS IN AN EDITOR 47

Figure 4.4: Here’s how a new script looks in the editor window on RStudio. The code you type won’t be
executed until you send it to the console.

As you can see, R returned the (thankfully correct) value of 2. You’ll notice that the console also returns
the text [1]. This is just telling you you the index of the value next to it. Don’t worry about this for now,
it will make more sense later. As you can see, R can, thankfully, do basic calculations. In fact, at its heart,
R is technically just a fancy calculator. But that’s like saying Michael Jordan is just a fancy ball bouncer
or Donald Trump is just an orange with a dead fox on his head. It (and they), are much more than that.

4.2 Writing R scripts in an editor

There are certainly many cases where it makes sense to type code directly into the console. For example, to
open a help menu for a new function with the ? command, to take a quick look at a dataset with the

head() function, or to do simple calculations like 1+1, you should type directly into the console. However,
the problem with writing all your code in the console is that nothing that you write will be saved. So if you
make an error, or want to make a change to some earlier code, you have to type it all over again. Not very
efficient. For this (and many more reasons), you’ll should write any important code that you want to save
as an R script. An R script is just a bunch of R code in a single file. You can write an R script in any text
editor, but you should save it with the .R suffix to make it clear that it contains R code.} in an editor.

In RStudio, you’ll write your R code in the…wait for it…Source window. To start writing a new R script in
RStudio, click File – New File – R Script.

Shortcut! To create a new script in R, you can also use the command–shift–N shortcut on Mac. I don’t
know what it is on PC…and I don’t want to know.

When you open a new script, you’ll see a blank page waiting for you to write as much R code as you’d like.
In Figure 4.4, I have a new script called examplescript with a few random calculations.

You can have several R scripts open in the source window in separate tabs (like I have above).
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Figure 4.5: To evaluate code from the source, highlight it and run it.

4.2.1 Send code from an source to the console

When you type code into an R script, you’ll notice that, unlike typing code into the Console, nothing
happens. In order for R to interpret the code, you need to send it from the Editor to the Console. There

are a few ways to do this, here are the three most common ways:

1. Copy the code from the Editor (or anywhere that has valid R code), and paste it into the Console
(using Command–V).

2. Highlight the code you want to run (with your mouse or by holding Shift), then use the Command–
Return shortcut (see Figure 4.6).

3. Place the cursor on a single line you want to run, then use the Command–Return shortcut to run just
that line.

99% of the time, I use method 2, where I highlight the code I want, then use the Command–Return
shortcut . However, method 3 is great for trouble-shooting code line-by-line.

4.3 A brief style guide: Commenting and spacing

Like all programming languages, R isn’t just meant to be read by a computer, it’s also meant to be read by
other humans – or very well-trained dolphins. For this reason, it’s important that your code looks nice and
is understandable to other people and your future self. To keep things brief, I won’t provide a complete
style guide – instead I’ll focus on the two most critical aspects of good style: commenting and spacing.
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Figure 4.6: Ah...the Command–Return shortcut (Control–Enter on PC) to send highlighted code from the
Editor to the Console. Get used to this shortcut people. You’re going to be using this a lot

Figure 4.7: As Stan discovered in season six of South Park, your future self is a lazy, possibly intoxicated
moron. So do your future self a favor and make your code look nice. Also maybe go for a run once in a
while.
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4.3.1 Commenting code with the # (pound) sign

Comments are completely ignored by R and are just there for whomever is reading the code. You can use
comments to explain what a certain line of code is doing, or just to visually separate meaningful chunks of
code from each other. Comments in R are designated by a # (pound) sign. Whenever R encounters a #
sign, it will ignore all the code after the # sign on that line. Additionally, in most coding editors (like

RStudio) the editor will display comments in a separate color than standard R code to remind you that it’s
a comment:

Here is an example of a short script that is nicely commented. Try to make your scripts look like this!
# Author: Pirate Jack
# Title: My nicely commented R Script
# Date: None today :(

# Step 1: Load the yarrr package
library(yarrr)

# Step 2: See the column names in the movies dataset
names(movies)

# Step 3: Calculations

# What percent of movies are sequels?
mean(movies$sequel, na.rm = T)

# How much did Pirate's of the Caribbean: On Stranger Tides make?
movies$revenue.all[movies$name == 'Pirates of the Caribbean: On Stranger Tides']

I cannot stress enough how important it is to comment your code! Trust me, even if you don’t plan on
sharing your code with anyone else, keep in mind that your future self will be reading it in the future.

4.3.2 Spacing

Howwouldyouliketoreadabookiftherewerenospacesbetweenwords? I’mguessingyouwouldn’t.
Soeverytimeyouwritecodewithoutproperspacing,rememberthissentence.

Commenting isn’t the only way to make your code legible. It’s important to make appropriate use of
spaces and line breaks. For example, I include spaces between arithmetic operators (like =, + and -) and

after commas (which we’ll get to later). For example, look at the following code:
# Shitty looking code
a<-(100+3)-2
mean(c(a/100,642564624.34))
t.test(formula=revenue.all~sequel,data=movies)
plot(x=movies$budget,y=movies$dvd.usa,main="myplot")

That code looks like shit. Don’t write code like that. It makes my eyes hurt. Now, let’s use some liberal
amounts of commenting and spacing to make it look less shitty.

# Some meaningless calculations. Not important

a <- (100 + 3) - 2
mean(c(a / 100, 642564624.34))

# t.test comparing revenue of sequels v non-sequels
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Figure 4.8: Don’t make your code look like what a sick Triceratops with diarrhea left behind for Jeff
Goldblum.

t.test(formula = revenue.all ~ sequel,
data = movies)

# A scatterplot of budget and dvd revenue.
# Hard to see a relationship

plot(x = movies$budget,
y = movies$dvd.usa,
main = "myplot")

See how much better that second chunk of code looks? Not only do the comments tell us the purpose
behind the code, but there are spaces and line-breaks separating distinct elements.

There are a lot more aspects of good code formatting. For a list of recommendations on how to make your
code easier to follow, check out Google’s own company R Style guide at

https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml

4.4 Objects and functions

To understand how R works, you need to know that R revolves around two things: objects and functions.
Almost everything in R is either an object or a function. In the following code chunk, I’ll define a simple

object called tattoos using a function c():
# 1: Create a vector object called tattoos
tattoos <- c(4, 67, 23, 4, 10, 35)

# 2: Apply the mean() function to the tattoos object
mean(tattoos)
## [1] 24

What is an object? An object is a thing – like a number, a dataset, a summary statistic like a mean or
standard deviation, or a statistical test. Objects come in many different shapes and sizes in R. There are
simple objects like scalars which represent single numbers, vectors (like our tattoos object above) which
represent several numbers, more complex objects like dataframes which represent tables of data, and even

https://google-styleguide.googlecode.com/svn/trunk/Rguide.xml
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more complex objects like hypothesis tests or regression which contain all sorts of statistical
information.

Different types of objects have different attributes. For example, a vector of data has a length attribute
(i.e.; how many numbers are in the vector), while a hypothesis test has many attributes such as a

test-statistic and a p-value. Don’t worry if this is a bit confusing now – it will all become clearer when you
meet these new objects in person in later chapters. For now, just know that objects in R are things, and

different objects have different attributes.

What is a function? A function is a procedure that typically takes one or more objects as arguments (aka,
inputs), does something with those objects, then returns a new object. For example, the mean() function

we used above takes a vector object, like tattoos, of numeric data as an argument, calculates the
arithmetic mean of those data, then returns a single number (a scalar) as a result.A great thing about R is
that you can easily create your own functions that do whatever you want – but we’ll get to that much later
in the book. Thankfully, R has hundreds (thousands?) of built-in functions that perform most of the basic

analysis tasks you can think of.

99% of the time you are using R, you will do the following: 1) Define objects. 2) Apply functions to those
objects. 3) Repeat!. Seriously, that’s about it. However, as you’ll soon learn, the hard part is knowing how
to define objects they way you want them, and knowing which function(s) will accomplish the task you

want for your objects.

4.4.1 Numbers versus characters

For the most part, objects in R come in one of two flavors: numeric and character. It is very important
to keep these two separate as certain functions, like mean(), and max() will only work for numeric objects,

while functions like grep() and strtrim() only work for character objects.

A numeric object is just a number like 1, 10 or 3.14. You don’t have to do anything special to create a
numeric object, just type it like you were using a calculator.

# These are all numeric objects
1
10
3.14

A character object is a name like "Madisen", "Brian", or "University of Konstanz". To specify a
character object, you need to include quotation marks "" around the text.

# These are all character objects
"Madisen"
"Brian"
"10"

If you try to perform a function or operation meant for a numeric object on a character object (and
vice-versa), R will yell at you. For example, here’s what happens when I try to take the mean of the two

character objects "1" and "10":
# This will return an error because the arguments are not numeric!
mean(c("1", "10"))

Warning message: argument is not numeric or logical, returning NA

If I make sure that the arguments are numeric (by not including the quotation marks), I won’t receive the
error:

# This is ok!
mean(c(1, 10))
## [1] 5.5
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4.4.2 Creating new objects with <-

By now you know that you can use R to do simple calculations. But to really take advantage of R, you
need to know how to create and manipulate objects. All of the data, analyses, and even plots, you use and
create are, or can be, saved as objects in R. For example the movies dataset which we’ve used before is an
object stored in the yarrr package. This object was defined in the yarrr package with the name movies.
When you loaded the yarrr package with the library('yarrr') command, you told R to give you access

to the movies object. Once the object was loaded, we could use it to calculate descriptive statistics,
hypothesis tests, and to create plots.

To create new objects in R, you need to do object assignment. Object assignment is our way of storing
information, such as a number or a statistical test, into something we can easily refer to later. This is a

pretty big deal. Object assignment allows us to store data objects under relevant names which we can then
use to slice and dice specific data objects anytime we’d like to.

To do an assignment, we use the almighty <- operator called assign To assign something to a new object
(or to change an existing object), use the notation object <- ...}, where object is the new (or updated)
object, and ... is whatever you want to store in object. Let’s start by creating a very simple object called

a and assigning the value of 100 to it:

Good object names strike a balance between being easy to type (i.e.; short names) and interpret. If you
have several datasets, it’s probably not a good idea to name them a, b, c because you’ll forget which is

which. However, using long names like March2015Group1OnlyFemales will give you carpal tunnel syndrome.
# Create a new object called a with a value of 100
a <- 100

Once you run this code, you’ll notice that R doesn’t tell you anything. However, as long as you didn’t type
something wrong, R should now have a new object called a which contains the number 100. If you want to
see the value, you need to call the object by just executing its name. This will print the value of the object

to the console:
# Print the object a
a
## [1] 100

Now, R will print the value of a (in this case 100) to the console. If you try to evaluate an object that is not
yet defined, R will return an error. For example, let’s try to print the object b which we haven’t yet defined:
b

Error: object ‘b’ not found

As you can see, R yelled at us because the object b hasn’t been defined yet.

Once you’ve defined an object, you can combine it with other objects using basic arithmetic. Let’s create
objects a and b and play around with them.

a <- 1
b <- 100

# What is a + b?
a + b
## [1] 101

# Assign a + b to a new object (c)
c <- a + b

# What is c?
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c
## [1] 101

4.4.2.1 To change an object, you must assign it again!

Normally I try to avoid excessive emphasis, but because this next sentence is so important, I have to just
go for it. Here it goes…

To change an object, you must assign it again!

No matter what you do with an object, if you don’t assign it again, it won’t change. For example, let’s say
you have an object z with a value of 0. You’d like to add 1 to z in order to make it 1. To do this, you might
want to just enter z + 1 – but that won’t do the job. Here’s what happens if you don’t assign it again:

z <- 0
z + 1
## [1] 1

Ok! Now let’s see the value of z
z
## [1] 0

Damn! As you can see, the value of z is still 0! What went wrong? Oh yeah…

To change an object, you must assign it again!

The problem is that when we wrote z + 1 on the second line, R thought we just wanted it to calculate and
print the value of z + 1, without storing the result as a new z object. If we want to actually update the

value of z, we need to reassign the result back to z as follows:
z <- 0
z <- z + 1 # Now I'm REALLY changing z
z
## [1] 1

Phew, z is now 1. Because we used assignment, z has been updated. About freaking time.

4.4.3 How to name objects

You can create object names using any combination of letters and a few special characters (like . and _).
Here are some valid object names

# Valid object names
group.mean <- 10.21
my.age <- 32
FavoritePirate <- "Jack Sparrow"
sum.1.to.5 <- 1 + 2 + 3 + 4 + 5

All the object names above are perfectly valid. Now, let’s look at some examples of invalid object names.
These object names are all invalid because they either contain spaces, start with numbers, or have invalid

characters:
# Invalid object names!
famale ages <- 50 # spaces
5experiment <- 50 # starts with a number
a! <- 50 # has an invalid character
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Figure 4.9: Like a text message, you should probably watch your use of capitalization in R.

If you try running the code above in R, you will receive a warning message starting with

Error: unexpected symbol

. Anytime you see this warning in R, it almost always means that you have a naming error of some kind.

4.4.3.1 R is case-sensitive!

Like English, R is case-sensitive – it R treats capital letters differently from lower-case letters. For example,
the four following objects Plunder, plunder and PLUNDER are totally different objects in R:

# These are all different objects
Plunder <- 1
plunder <- 100
PLUNDER <- 5

I try to avoid using too many capital letters in object names because they require me to hold the shift key.
This may sound silly, but you’d be surprised how much easier it is to type mydata than MyData 100 times.
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4.4.4 Example: Pirates of The Caribbean

Let’s do a more practical example – we’ll define an object called blackpearl.usd which has the global
revenue of Pirates of the Caribbean: Curse of the Black Pearl in U.S. dollars. A quick Google search

showed me that the revenue was $634,954,103. I’ll create the new object using assignment:
blackpearl.usd <- 634954103

Now, my fellow European pirates might want to know how much this is in Euros. Let’s create a new object
called {blackpearl.eur which converts our original value to Euros by multiplying the original amount by

0.88 (assuming 1 USD = 0.88 EUR)
blackpearl.eur <- blackpearl.usd * 0.88
blackpearl.eur
## [1] 5.6e+08

It looks like the movie made 558,759,611 in Euros. Not bad. Now, let’s see how much more Pirates of the
Caribbean 2: Dead Man’s Chest made compared to “Curse of the Black Pearl.” Another Google search
uncovered that Dead Man’s Chest made $1,066,215,812 (that wasn’t a mistype, the freaking movie made

over a billion dollars).
deadman.usd <- 1066215812

Now, I’ll divide deadman.usd by blackpearl.usd:
deadman.usd / blackpearl.usd
## [1] 1.7

It looks like “Dead Man’s Chest” made 168% as much as “Curse of the Black Pearl” - not bad for two
movies based off of a ride from Disneyland.

4.5 Test your R might!

1. Create a new R script. Using comments, write your name, the date, and “Testing my Chapter 2 R
Might” at the top of the script. Write your answers to the rest of these exercises on this script, and be
sure to copy and paste the original questions using comments! Your script should only contain valid
R code and comments.

2. Which (if any) of the following objects names is/are invalid?
thisone <- 1
THISONE <- 2
1This <- 3
this.one <- 4
This.1 <- 5
ThIS.....ON...E <- 6
This!On!e <- 7
lkjasdfkjsdf <- 8

3. 2015 was a good year for pirate booty - your ship collected 100,800 gold coins. Create an object called
gold.in.2015 and assign the correct value to it.

4. Oops, during the last inspection we discovered that one of your pirates Skippy McGee hid 800 gold
coins in his underwear. Go ahead and add those gold coins to the object gold.in.2015. Next, create
an object called plank.list with the name of the pirate thief.

5. Look at the code below. What will R return after the third line? Make a prediction, then test the
code yourself.
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a <- 10
a + 10
a
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Chapter 5

Scalars and vectors

# Crew information
captain.name <- "Jack"
captain.age <- 33

crew.names <- c("Heath", "Vincent", "Maya", "Becki")
crew.ages <- c(19, 35, 22, 44)
crew.sex <- c(rep("M", times = 2), rep("F", times = 2))
crew.ages.decade <- crew.ages / 10

# Earnings over first 10 days at sea
days <- 1:10
gold <- seq(from = 10, to = 100, by = 10)
silver <- rep(50, times = 10)
total <- gold + silver

People are not objects. But R is full of them. Here are some of the basic ones.

5.1 Scalars

The simplest object type in R is a scalar. A scalar object is just a single value like a number or a name. In
the previous chapter we defined several scalar objects. Here are examples of numeric scalars:

# Examples of numeric scalers
a <- 100
b <- 3 / 100
c <- (a + b) / b

Scalars don’t have to be numeric, they can also be characters (also known as strings). In R, you denote
characters using quotation marks. Here are examples of character scalars:

# Examples of character scalers
d <- "ship"
e <- "cannon"
f <- "Do any modern armies still use cannons?"

As you can imagine, R treats numeric and character scalars differently. For example, while you can do
basic arithmetic operations on numeric scalars – they won’t work on character scalars. If you try to
perform numeric operations (like addition) on character scalars, you’ll get an error like this one:

59
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scalar Vector

Figure 5.1: Visual depiction of a scalar and vector. Deep shit. Wait until we get to matrices - you’re going
to lose it.

a <- "1"
b <- "2"
a + b

Error in a + b: non-numeric argument to binary operator

If you see an error like this one, it means that you’re trying to apply numeric operations to character
objects. That’s just sick and wrong.

5.2 Vectors

Now let’s move onto vectors. A vector object is just a combination of several scalars stored as a single
object. For example, the numbers from one to ten could be a vector of length 10, and the characters in the
English alphabet could be a vector of length 26. Like scalars, vectors can be either numeric or character

(but not both!).

There are many ways to create vectors in R. Here are the methods we will cover in this chapter:

Table 5.1: Functions to create vectors.

Function Example Result
c(a, b, ...) c(1, 5, 9) 1, 5, 9
a:b 1:5 1, 2, 3, 4, 5
seq(from, to, by, length.out) seq(from = 0, to = 6, by = 2) 0, 2, 4, 6
rep(x, times, each,
length.out)

rep(c(7, 8), times = 2, each = 2) 7, 7, 8, 8, 7, 7,
8, 8

The simplest way to create a vector is with the c() function. The c here stands for concatenate, which
means “bring them together”. The c() function takes several scalars as arguments, and returns a vector
containing those objects. When using c(), place a comma in between the objects (scalars or vectors) you

want to combine:

Let’s use the c() function to create a vector called a containing the integers from 1 to 5.
# Create an object a with the integers from 1 to 5
a <- c(1, 2, 3, 4, 5)

# Print the result
a
## [1] 1 2 3 4 5

As you can see, R has stored all 5 numbers in the object a. Thanks R!

You can also create longer vectors by combining vectors you have already defined. Let’s create a vector of
the numbers from 1 to 10 by first generating a vector a from 1 to 5, and a vector b from 6 to 10 then

combine them into a single vector x:
a <- c(1, 2, 3, 4, 5)
b <- c(6, 7, 8, 9, 10)
x <- c(a, b)
x
## [1] 1 2 3 4 5 6 7 8 9 10

You can also create character vectors by using the c() function to combine character scalars into character
vectors:
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Figure 5.2: This is not a pipe. It is a character vector.

char.vec <- c("Ceci", "nest", "pas", "une", "pipe")
char.vec
## [1] "Ceci" "nest" "pas" "une" "pipe"

While the c() function is the most straightforward way to create a vector, it’s also one of the most tedious.
For example, let’s say you wanted to create a vector of all integers from 1 to 100. You definitely don’t want
to have to type all the numbers into a c() operator. Thankfully, R has many simple built-in functions for

generating numeric vectors. Let’s start with three of them: a:b, seq(), and rep():

5.2.1 a:b

The a:b function takes two numeric scalars a and b as arguments, and returns a vector of numbers from
the starting point a to the ending point b in steps of 1.

Here are some examples of the a:b function in action. As you’ll see, you can go backwards or forwards, or
make sequences between non-integers:

1:10
## [1] 1 2 3 4 5 6 7 8 9 10
10:1
## [1] 10 9 8 7 6 5 4 3 2 1
2.5:8.5
## [1] 2.5 3.5 4.5 5.5 6.5 7.5 8.5

5.2.2 seq()

Argument Definition
from The start of the sequence
to The end of the sequence
by The step-size of the sequence
length.out The desired length of the final sequence

(only use if you don’t specify by)

The seq() function is a more flexible version of a:b. Like a:b, seq() allows you to create a sequence from
a starting number to an ending number. However, seq(), has additional arguments that allow you to

specify either the size of the steps between numbers, or the total length of the sequence:

The seq() function has two new arguments by and length.out. If you use the by argument, the sequence
will be in steps of the input to the by argument:

# Create the numbers from 1 to 10 in steps of 1
seq(from = 1, to = 10, by = 1)
## [1] 1 2 3 4 5 6 7 8 9 10

# Integers from 0 to 100 in steps of 10
seq(from = 0, to = 100, by = 10)
## [1] 0 10 20 30 40 50 60 70 80 90 100

If you use the length.out argument, the sequence will have length equal to length.out.
# Create 10 numbers from 1 to 5
seq(from = 1, to = 5, length.out = 10)
## [1] 1.0 1.4 1.9 2.3 2.8 3.2 3.7 4.1 4.6 5.0
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Figure 5.3: Not a good depiction of a rep in R.

# 3 numbers from 0 to 100
seq(from = 0, to = 100, length.out = 3)
## [1] 0 50 100

5.2.3 rep()

Argument Definition
x A scalar or vector of values to repeat
times The number of times to repeat x
each The number of times to repeat each value within x
length.out The desired length of the final sequence

The rep() function allows you to repeat a scalar (or vector) a specified number of times, or to a desired
length. Let’s do some reps.

rep(x = 3, times = 10)
## [1] 3 3 3 3 3 3 3 3 3 3
rep(x = c(1, 2), each = 3)
## [1] 1 1 1 2 2 2
rep(x = 1:3, length.out = 10)
## [1] 1 2 3 1 2 3 1 2 3 1

As you can see, you can can include an a:b call within a rep()!

You can even combine the times and each arguments within a single rep() function. For example, here’s
how to create the sequence {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3} with one call to rep():

rep(x = 1:3, each = 2, times = 2)
## [1] 1 1 2 2 3 3 1 1 2 2 3 3

Warning! Vectors contain either numbers or characters, not both

A vector can only contain one type of scalar: either numeric or character. If you try to create a vector with
numeric and character scalars, then R will convert all of the numeric scalars to characters. In the next

code chunk, I’ll create a new vector called my.vec that contains a mixture of numeric and character scalars.
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my.vec <- c("a", 1, "b", 2, "c", 3)
my.vec
## [1] "a" "1" "b" "2" "c" "3"

As you can see from the output, my.vec is stored as a character vector where all the numbers are converted
to characters.

5.3 Generating random data

Because R is a language built for statistics, it contains many functions that allow you generate random
data – either from a vector of data that you specify (like Heads or Tails from a coin), or from an

established probability distribution, like the Normal or Uniform distribution.

In the next section we’ll go over the standard sample() function for drawing random values from a vector.
We’ll then cover some of the most commonly used probability distributions: Normal and Uniform.

5.3.1 sample()

Argument Definition
x A vector of outcomes you want to sample from. For example, to

simulate coin flips, you’d enter x = c("H", "T")
size The number of samples you want to draw. The default is the

length of x.
replace Should sampling be done with replacement? If FALSE (the

default value), then each outcome in x can only be drawn once.
If TRUE, then each outcome in x can be drawn multiple times.

prob A vector of probabilities of the same length as x indicating how
likely each outcome in x is. The vector of probabilities you give
as an argument should add up to one. If you don’t specify the
prob argument, all outcomes will be equally likely.

The sample() function allows you to draw random samples of elements (scalars) from a vector. For
example, if you want to simulate the 100 flips of a fair coin, you can tell the sample function to sample 100
values from the vector [“Heads”, “Tails”]. Or, if you need to randomly assign people to either a “Control”
or “Test” condition in an experiment, you can randomly sample values from the vector [“Control”, “Test”]:

Let’s use sample() to draw 10 samples from a vector of integers from 1 to 10.
# From the integers 1:10, draw 5 numbers
sample(x = 1:10, size = 5)
## [1] 2 1 5 3 9

5.3.1.1 replace = TRUE

If you don’t specify the replace argument, R will assume that you are sampling without replacement. In
other words, each element can only be sampled once. If you want to sample with replacement, use the

replace = TRUE argument:

Think about replacement like drawing balls from a bag. Sampling with replacement (replace = TRUE)
means that each time you draw a ball, you return the ball back into the bag before drawing another ball.
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Sampling without replacement (replace = FALSE) means that after you draw a ball, you remove that ball
from the bag so you can never draw it again.

# Draw 30 samples from the integers 1:5 with replacement
sample(x = 1:5, size = 10, replace = TRUE)
## [1] 2 3 5 2 3 5 4 4 2 1

If you try to draw a large sample from a vector without replacement, R will return an error because it runs
out of things to draw:

# You CAN'T draw 10 samples without replacement from
# a vector with length 5
sample(x = 1:5, size = 10)

Error: cannot take a sample larger than the population when ‘replace = FALSE’

To fix this, just tell R that you want to sample with replacement:
# You CAN draw 10 samples with replacement from a
# vector of length 5
sample(x = 1:5, size = 10, replace = TRUE)
## [1] 4 2 2 3 3 4 5 3 2 5

To specify how likely each element in the vector x should be selected, use the prob argument. The length
of the prob argument should be as long as the x argument. For example, let’s draw 10 samples (with

replacement) from the vector [“a”, “b”], but we’ll make the probability of selecting “a” to be .90, and the
probability of selecting “b” to be .10

sample(x = c("a", "b"),
prob = c(.9, .1),
size = 10,
replace = TRUE)

## [1] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"

5.3.1.2 Ex: Simulating coin flips

Let’s simulate 10 flips of a fair coin, were the probably of getting either a Head or Tail is .50. Because all
values are equally likely, we don’t need to specify the prob argument

sample(x = c("H", "T"), # The possible values of the coin
size = 10, # 10 flips
replace = TRUE) # Sampling with replacement

## [1] "H" "H" "T" "T" "H" "T" "H" "T" "H" "H"

Now let’s change it by simulating flips of a biased coin, where the probability of Heads is 0.8, and the
probability of Tails is 0.2. Because the probabilities of each outcome are no longer equal, we’ll need to

specify them with the prob argument:
sample(x = c("H", "T"),

prob = c(.8, .2), # Make the coin biased for Heads
size = 10,
replace = TRUE)

## [1] "H" "H" "H" "H" "H" "T" "T" "H" "H" "H"

As you can see, our function returned a vector of 10 values corresponding to our sample size of 10.



5.3. GENERATING RANDOM DATA 65

5.3.1.3 Ex: Coins from a chest

Chest of 20 Gold, 30 Silver,
and 50 Bronze Coins

Now, let’s sample drawing coins from a treasure chest Let’s say the chest has 100 coins: 20 gold, 30 silver,
and 50 bronze. Let’s draw 10 random coins from this chest.

# Create chest with the 100 coins

chest <- c(rep("gold", 20),
rep("silver", 30),
rep("bronze", 50))

# Draw 10 coins from the chest
sample(x = chest,

size = 10)
## [1] "bronze" "bronze" "bronze" "bronze" "bronze" "silver" "bronze"
## [8] "bronze" "bronze" "silver"

The output of the sample() function above is a vector of 10 strings indicating the type of coin we drew on
each sample. And like any random sampling function, this code will likely give you different results every

time you run it! See how long it takes you to get 10 gold coins…

In the next section, we’ll cover how to generate random data from specified probability distributions. What
is a probability distribution? Well, it’s simply an equation – also called a likelihood function – that

indicates how likely certain numerical values are to be drawn.

We can use probability distributions to represent different types of data. For example, imagine you need to
hire a new group of pirates for your crew. You have the option of hiring people from one of two different
pirate training colleges that produce pirates of varying quality. One college “Pirate Training Unlimited”

might tend to pirates that are generally ok - never great but never terrible. While another college
“Unlimited Pirate Training” might produce pirates with a wide variety of quality, from very low to very

high. In Figure 5.4 I plotted 5 example pirates from each college, where each pirate is shown as a ball with
a number written on it. As you can see, pirates from PTU all tend to be clustered between 40 and 60 (not
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Two different Pirate colleges

Pirate Quality

Pirate Training Unlimited

4748 565843

Unlimited Pirate Training

52 6519 34 63

Figure 5.4: Sampling 5 potential pirates from two different pirate colleges. Pirate Training Unlimited (PTU)
consistently produces average pirates (with scores between 40 and 60), while Unlimited Pirate Training
(UPT), produces a wide range of pirates from 0 to 100.

terrible but not great), while pirates from UPT are all over the map, from 0 to 100. We can use probability
distributions (in this case, the uniform distribution) to mathematically define how likely any possible value
is to be drawn at random from a distribution. We could describe Pirate Training Unlimited with a uniform
distribution with a small range, and Unlimited Pirate Training with a second uniform distribution with a

wide range.

In the next two sections, I’ll cover the two most common distributions: The Normal and the Uniform.
However, R contains many more distributions than just these two. To see them all, look at the help menu

for Distributions:
# See all distributions included in Base R
?Distributions

5.3.2 Normal (Gaussian)

Argument Definition
n The number of observations to draw from the distribution.
mean The mean of the distribution.
sd The standard deviation of the distribution.

The Normal (a.k.a “Gaussian”) distribution is probably the most important distribution in all of statistics.
The Normal distribution is bell-shaped, and has two parameters: a mean and a standard deviation. To

generate samples from a normal distribution in R, we use the function rnorm()
# 5 samples from a Normal dist with mean = 0, sd = 1
rnorm(n = 5, mean = 0, sd = 1)
## [1] -1.38 2.40 0.37 0.53 0.69

# 3 samples from a Normal dist with mean = -10, sd = 15
rnorm(n = 3, mean = -10, sd = 15)
## [1] -21 -14 -25

Again, because the sampling is done randomly, you’ll get different values each time you run rnorm()

5.3.3 Uniform

Next, let’s move on to the Uniform distribution. The Uniform distribution gives equal probability to all
values between its minimum and maximum values. In other words, everything between its lower and upper

bounds are equally likely to occur. To generate samples from a uniform distribution, use the function
runif(), the function has 3 arguments:

Argument Definition
n The number of observations to draw from the distribution.
min The lower bound of the Uniform distribution from which samples

are drawn
max The upper bound of the Uniform distribution from which

samples are drawn

Here are some samples from two different Uniform distributions:
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Figure 5.5: Three different normal distributions with different means and standard deviations
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# 5 samples from Uniform dist with bounds at 0 and 1
runif(n = 5, min = 0, max = 1)
## [1] 0.94 0.80 0.57 0.11 0.22

# 10 samples from Uniform dist with bounds at -100 and +100
runif(n = 10, min = -100, max = 100)
## [1] 10.94 -80.50 52.38 0.45 -79.65 31.94 87.28 -67.69 -58.64 -0.37

5.3.4 Notes on random samples

5.3.4.1 Random samples will always change

Every time you draw a sample from a probability distribution, you’ll (likely) get a different result. For
example, see what happens when I run the following two commands (you’ll learn the rnorm() function on

the next page…)
# Draw a sample of size 5 from a normal distribution with mean 100 and sd 10
rnorm(n = 5, mean = 100, sd = 10)
## [1] 107 94 103 106 100

# Do it again!
rnorm(n = 5, mean = 100, sd = 10)
## [1] 113 104 109 108 96

As you can see, the exact same code produced different results – and that’s exactly what we want! Each
time you run rnorm(), or another distribution function, you’ll get a new random sample.

5.3.4.2 Use set.seed() to control random samples

There will be cases where you will want to exert some control over the random samples that R produces
from sampling functions. For example, you may want to create a reproducible example of some code that
anyone else can replicate exactly. To do this, use the set.seed() function. Using set.seed() will force R

to produce consistent random samples at any time on any computer.

In the code below I’ll set the sampling seed to 100 with set.seed(100). I’ll then run rnorm() twice. The
results will always be consistent (because we fixed the sampling seed).

# Fix sampling seed to 100, so the next sampling functions
# always produce the same values
set.seed(100)

# The result will always be -0.5022, 0.1315, -0.0789
rnorm(3, mean = 0, sd = 1)
## [1] -0.502 0.132 -0.079

# The result will always be 0.887, 0.117, 0.319
rnorm(3, mean = 0, sd = 1)
## [1] 0.89 0.12 0.32

Try running the same code on your machine and you’ll see the exact same samples that I got above. Oh
and the value of 100 I used above in set.seed(100) is totally arbitrary – you can set the seed to any

integer you want. I just happen to like how set.seed(100) looks in my code.
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5.4 Test your R might!

1. Create the vector [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] in three ways: once using c(), once using a:b, and once
using seq().

2. Create the vector [2.1, 4.1, 6.1, 8.1] in two ways, once using c() and once using seq()

3. Create the vector [0, 5, 10, 15] in 3 ways: using c(), seq() with a by argument, and seq() with a
length.out argument.

4. Create the vector [101, 102, 103, 200, 205, 210, 1000, 1100, 1200] using a combination of the c() and
seq() functions

5. A new batch of 100 pirates are boarding your ship and need new swords. You have 10 scimitars, 40
broadswords, and 50 cutlasses that you need to distribute evenly to the 100 pirates as they board.
Create a vector of length 100 where there is 1 scimitar, 4 broadswords, and 5 cutlasses in each group of
10. That is, in the first 10 elements there should be exactly 1 scimitar, 4 broadswords and 5 cutlasses.
The next 10 elements should also have the same number of each sword (and so on).

6. Create a vector that repeats the integers from 1 to 5, 10 times. That is [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, …].
The length of the vector should be 50!

7. Now, create the same vector as before, but this time repeat 1, 10 times, then 2, 10 times, etc., That is
[1, 1, 1, …, 2, 2, 2, …, … 5, 5, 5]. The length of the vector should also be 50

8. Create a vector containing 50 samples from a Normal distribution with a population mean of 20 and
standard deviation of 2.

9. Create a vector containing 25 samples from a Uniform distribution with a lower bound of -100 and an
upper bound of -50.
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Chapter 6

Vector functions

In this chapter, we’ll cover the core functions for vector objects. The code below uses the functions you’ll
learn to calculate summary statistics from two exams.

# 10 students from two different classes took two exams.
# Here are three vectors showing the data
midterm <- c(62, 68, 75, 79, 55, 62, 89, 76, 45, 67)
final <- c(78, 72, 97, 82, 60, 83, 92, 73, 50, 88)

# How many students are there?
length(midterm)
## [1] 10

# Add 5 to each midterm score (extra credit!)
midterm <- midterm + 5
midterm
## [1] 67 73 80 84 60 67 94 81 50 72

# Difference between final and midterm scores
final - midterm
## [1] 11 -1 17 -2 0 16 -2 -8 0 16

# Each student's average score
(midterm + final) / 2
## [1] 72 72 88 83 60 75 93 77 50 80

# Mean midterm grade
mean(midterm)
## [1] 73

# Standard deviation of midterm grades
sd(midterm)
## [1] 13

# Highest final grade
max(final)
## [1] 97

# z-scores

71
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midterm.z <- (midterm - mean(midterm)) / sd(midterm)
final.z <- (final - mean(final)) / sd(final)

6.1 Arithmetic operations on vectors

So far, you know how to do basic arithmetic operations like + (addition), - (subtraction), and *
(multiplication) on scalars. Thankfully, R makes it just as easy to do arithmetic operations on numeric

vectors:
a <- c(1, 2, 3, 4, 5)
b <- c(10, 20, 30, 40, 50)

a + 100
## [1] 101 102 103 104 105
a + b
## [1] 11 22 33 44 55
(a + b) / 10
## [1] 1.1 2.2 3.3 4.4 5.5

If you do an operation on a vector with a scalar, R will apply the scalar to each element in the vector. For
example, if you have a vector and want to add 10 to each element in the vector, just add the vector and
scalar objects. Let’s create a vector with the integers from 1 to 10, and add then add 100 to each element:
# Take the integers from 1 to 10, then add 100 to each
1:10 + 100
## [1] 101 102 103 104 105 106 107 108 109 110

As you can see, the result is [1 + 100, 2 + 100, … 10 + 100]. Of course, we could have made this vector
with the a:b function like this: 101:110, but you get the idea.
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Of course, this doesn’t only work with addition…oh no. Let’s try division, multiplication, and exponents.
Let’s create a vector a with the integers from 1 to 10 and then change it up:

a <- 1:10
a / 100
## [1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
a ^ 2
## [1] 1 4 9 16 25 36 49 64 81 100

Again, if you perform an algebraic operation on a vector with a scalar, R will just apply the operation to
every element in the vector.

6.1.1 Basic math with multiple vectors

What if you want to do some operation on two vectors of the same length? Easy. Just apply the operation
to both vectors. R will then combine them element–by–element. For example, if you add the vector [1, 2, 3,
4, 5] to the vector [5, 4, 3, 2, 1], the resulting vector will have the values [1 + 5, 2 + 4, 3 + 3, 4 + 2, 5 + 1]

= [6, 6, 6, 6, 6]:
c(1, 2, 3, 4, 5) + c(5, 4, 3, 2, 1)
## [1] 6 6 6 6 6

Let’s create two vectors a and b where each vector contains the integers from 1 to 5. We’ll then create two
new vectors ab.sum, the sum of the two vectors and ab.diff, the difference of the two vectors, and

ab.prod, the product of the two vectors:
a <- 1:5
b <- 1:5

ab.sum <- a + b
ab.diff <- a - b
ab.prod <- a * b

ab.sum
## [1] 2 4 6 8 10
ab.diff
## [1] 0 0 0 0 0
ab.prod
## [1] 1 4 9 16 25

6.1.2 Ex: Pirate Bake Sale

Let’s say you had a bake sale on your ship where 5 pirates sold both pies and cookies. You could record the
total number of pies and cookies sold in two vectors:

pies <- c(3, 6, 2, 10, 4)
cookies <- c(70, 40, 40, 200, 60)

Now, let’s say you want to know how many total items each pirate sold. You can do this by just adding the
two vectors:

total.sold <- pies + cookies
total.sold
## [1] 73 46 42 210 64

Crazy.
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Figure 6.1: According to this article published in 2015 in Plos One, when it comes to people, length may
matter for some. But trust me, for vectors it always does.

6.2 Summary statistics

Ok, now that we can create vectors, let’s learn the basic descriptive statistics functions. We’ll start with
functions that apply to continuous data. Continuous data is data that, generally speaking, can take on an
infinite number of values. Height and weight are good examples of continuous data. Table 6.1 contains
common functions for continuous, numeric vectors. Each of them takes a numeric vector as an argument,

and returns either a scalar (or in the case of summary(), a table) as a result.

Table 6.1: Summary statistic functions for continuous data.

Function Example Result
sum(x), product(x) sum(1:10) 55
min(x), max(x) min(1:10) 1
mean(x), median(x) mean(1:10) 5.5
sd(x), var(x), range(x) sd(1:10) 3.03
quantile(x, probs) quantile(1:10, probs = .2) 2.8
summary(x) summary(1:10) Min = 1.00. 1st Qu. = 3.25,

Median = 5.50, Mean = 5.50,
3rd Qu. = 7.75, Max = 10.0

Let’s calculate some descriptive statistics from some pirate related data. I’ll create a vector called x that
contains the number of tattoos from 10 random pirates.

tattoos <- c(4, 50, 2, 39, 4, 20, 4, 8, 10, 100)

Now, we can calculate several descriptive statistics on this vector by using the summary statistics functions:
min(tattoos)
## [1] 2
mean(tattoos)
## [1] 24
sd(tattoos)
## [1] 31

6.2.1 length()

Vectors have one dimension: their length. Later on, when you combine vectors into more higher
dimensional objects, like matrices and dataframes, you will need to make sure that all the vectors you
combine have the same length. But, when you want to know the length of a vector, don’t stare at your

computer screen and count the elements one by one! (That said, I must admit that I still do this
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sometimes…). Instead, use length() function. The length() function takes a vector as an argument, and
returns a scalar representing the number of elements in the vector:

a <- 1:10
length(a) # How many elements are in a?
## [1] 10

b <- seq(from = 1, to = 100, length.out = 20)
length(b) # How many elements are in b?
## [1] 20

length(c("This", "character", "vector", "has", "six", "elements."))
## [1] 6
length("This character scalar has just one element.")
## [1] 1

Get used to the length() function people, you’ll be using it a lot!

6.2.2 Additional numeric vector functions

Table 6.2 contains additional functions that you will find useful when managing numeric vectors:

Table 6.2: Vector summary functions for continuous data.

Function Description Example Result
round(x,
digits)

Round elements in x to
digits digits

round(c(2.231, 3.1415),
digits = 1)

2.2, 3.1

ceiling(x),
floor(x)

Round elements x to the
next highest (or lowest)
integer

ceiling(c(5.1, 7.9)) 6, 8

x %% y Modular arithmetic (ie. x
mod y)

7 %% 3 1

6.2.3 Sample statistics from random samples

Now that you know how to calculate summary statistics, let’s take a closer look at how R draws random
samples using the rnorm() and runif() functions. In the next code chunk, I’ll calculate some summary

statistics from a vector of 5 values from a Normal distribution with a mean of 10 and a standard deviation
of 5. I’ll then calculate summary statistics from this sample using mean() and sd():

# 5 samples from a Normal dist with mean = 10 and sd = 5
x <- rnorm(n = 5, mean = 10, sd = 5)

# What are the mean and standard deviation of the sample?
mean(x)
## [1] 11
sd(x)
## [1] 2.5

As you can see, the mean and standard deviation of our sample vector are close to the population values of
10 and 5 – but they aren’t exactly the same because these are sample data. If we take a much larger

sample (say, 100,000), the sample statistics should get much closer to the population values:
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# 100,000 samples from a Normal dist with mean = 10, sd = 5
y <- rnorm(n = 100000, mean = 10, sd = 5)

mean(y)
## [1] 10
sd(y)
## [1] 5

Yep, sure enough our new sample y (containing 100,000 values) has a sample mean and standard deviation
much closer (almost identical) to the population values than our sample x (containing only 5 values). This

is an example of what is called the law of large numbers. Google it.

6.3 Counting statistics

Next, we’ll move on to common counting functions for vectors with discrete or non-numeric data. Discrete
data are those like gender, occupation, and monkey farts, that only allow for a finite (or at least, plausibly
finite) set of responses. Common functions for discrete vectors are in Table 6.3. Each of these vectors takes
a vector as an argument – however, unlike the previous functions we looked at, the arguments to these

functions can be either numeric or character.

Table 6.3: Counting functions for discrete data.

Function Description Example Result
unique(x) Returns a vector of all

unique values.
unique(c(1, 1, 2, 10)) 1, 2, 10

table(x,
exclude)

Returns a table showing
all the unique values as
well as a count of each
occurrence. To include a
count of NA values,
include the argument
exclude = NULL

table(c("a", "a", "b",
"c"))

2-"a", 1-"b", 1-"c"

Let’s test these functions by starting with two vectors of discrete data:
vec <- c(1, 1, 1, 5, 1, 1, 10, 10, 10)
gender <- c("M", "M", "F", "F", "F", "M", "F", "M", "F")

The function unique(x) will tell you all the unique values in the vector, but won’t tell you anything about
how often each value occurs.

unique(vec)
## [1] 1 5 10
unique(gender)
## [1] "M" "F"

The function table() does the same thing as unique(), but goes a step further in telling you how often
each of the unique values occurs:

table(vec)
## vec
## 1 5 10
## 5 1 3
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table(gender)
## gender
## F M
## 5 4

If you want to get a table of percentages instead of counts, you can just divide the result of the table()
function by the sum of the result:

table(vec) / sum(table(vec))
## vec
## 1 5 10
## 0.56 0.11 0.33
table(gender) / sum(table(gender))
## gender
## F M
## 0.56 0.44

6.4 Missing (NA) values

In R, missing data are coded as NA. In real datasets, NA values turn up all the time. Unfortunately, most
descriptive statistics functions will freak out if there is a missing (NA) value in the data. For example, the

following code will return NA as a result because there is an NA value in the data vector:
a <- c(1, 5, NA, 2, 10)
mean(a)
## [1] NA

Thankfully, there’s a way we can work around this. To tell a descriptive statistic function to ignore missing
(NA) values, include the argument na.rm = TRUE in the function. This argument explicitly tells the
function to ignore NA values. Let’s try calculating the mean of the vector a again, this time with the

additionalna.rm = TRUE argument:
mean(a, na.rm = TRUE)
## [1] 4.5

Now, the function ignored the NA value and returned the mean of the remaining data. While this may
seem trivial now (why did we include an NA value in the vector if we wanted to ignore it?!), it will be

become very important when we apply the function to real data which, very often, contains missing values.

6.5 Standardization (z-score)

A common task in statistics is to standardize variables – also known as calculating z-scores. The purpose of
standardizing a vector is to put it on a common scale which allows you to compare it to other

(standardized) variables. To standardize a vector, you simply subtract the vector by its mean, and then
divide the result by the vector’s standard deviation.

If the concept of z-scores is new to you – don’t worry. In the next worked example, you’ll see how it can
help you compare two sets of data. But for now, let’s see how easy it is to standardize a vector using basic

arithmetic.

Let’s say you have a vector a containing some data. We’ll assign the vector to a new object called a then
calculate the mean and standard deviation with the mean() and sd() functions:
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Table 6.4: Scores from a pirate competition

pirate grogg climbing
Heidi 12 100
Andrew 8 520
Becki 1 430
Madisen 6 200
David 2 700

a <- c(5, 3, 7, 5, 5, 3, 4)
mean(a)
## [1] 4.6
sd(a)
## [1] 1.4

Ok. Now we’ll create a new vector called a.z which is a standardized version of a. To do this, we’ll simply
subtract the mean of the vector, then divide by the standard deviation.

a.z <- (a - mean(a)) / sd(a)

Now let’s look at the standardized values:
a.z
## [1] 0.31 -1.12 1.74 0.31 0.31 -1.12 -0.41

The mean of a.z should now be 0, and the standard deviation of a.z should now be 1. Let’s make sure:
mean(a.z)
## [1] 2e-16
sd(a.z)
## [1] 1

Sweet. Oh, don’t worry that the mean of a.z doesn’t look like exactly zero. Using non-scientific notation,
the result is 0.000000000000000198. For all intents and purposes, that’s 0. The reason the result is not

exactly 0 is due to computer science theoretical reasons that I cannot explain (because I don’t understand
them).

6.5.1 Ex: Evaluating a competition

Your gluten-intolerant first mate just perished in a tragic soy sauce incident and it’s time to promote
another member of your crew to the newly vacated position. Of course, only two qualities really matter for
a pirate: rope-climbing, and grogg drinking. Therefore, to see which of your crew deserves the promotion,
you decide to hold a climbing and drinking competition. In the climbing competition, you measure how

many feet of rope a pirate can climb in an hour. In the drinking competition, you measure how many mugs
of grogg they can drink in a minute. Five pirates volunteer for the competition – here are their results:

We can represent the main results with two vectors grogg and climbing:
grogg <- c(12, 8, 1, 6, 2)
climbing <- c(100, 520, 430, 200, 700)

Now you’ve got the data, but there’s a problem: the scales of the numbers are very different. While the
grogg numbers range from 1 to 12, the climbing numbers have a much larger range from 100 to 700. This

makes it difficult to compare the two sets of numbers directly.
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Table 6.5: Renata’s treasure haul when she was sober and when she was drunk

day sober drunk
Monday 2 0
Tuesday 0 0
Wednesday 3 1
Thursday 1 0
Friday 0 1
Saturday 3 2
Sunday 5 2

To solve this problem, we’ll use standardization. Let’s create new standardized vectors called grogg.z and
climbing.z

grogg.z <- (grogg - mean(grogg)) / sd(grogg)
climbing.z <- (climbing - mean(climbing)) / sd(climbing)

Now let’s look at the final results
grogg.z
## [1] 1.379 0.489 -1.068 0.044 -0.845
climbing.z
## [1] -1.20 0.54 0.17 -0.78 1.28

It looks like there were two outstanding performances in particular. In the grogg drinking competition, the
first pirate (Heidi) had a z-score of 1.4. We can interpret this by saying that Heidi drank 1.4 more standard
deviations of mugs of grogg than the average pirate. In the climbing competition, the fifth pirate (David)
had a z-score of 1.3. Here, we would conclude that David climbed 1.3 standard deviations more than the

average pirate.

But which pirate was the best on average across both events? To answer this, let’s create a combined
z-score for each pirate which calculates the average z-scores for each pirate across the two events. We’ll do
this by adding two performances and dividing by two. This will tell us, how good, on average, each pirate

did relative to her fellow pirates.
average.z <- (grogg.z + (climbing.z)) / 2

Let’s look at the result:
round(average.z, 1)
## [1] 0.1 0.5 -0.5 -0.4 0.2

The highest average z-score belongs to the second pirate (Andrew) who had an average z-score value of 0.5.
The first and last pirates, who did well in one event, seemed to have done poorly in the other event.

Moral of the story: promote the pirate who can drink and climb.

6.6 Test your R Might!

1. Create a vector that shows the square root of the integers from 1 to 10.

2. Renata thinks that she finds more treasure when she’s had a mug of grogg than when she doesn’t. To
test this, she recorded how much treasure she found over 7 days without drinking any grogg (ie., sober),
and then did the same over 7 days while drinking grogg (ie., drunk). Here are her results:

How much treasure did Renata find on average when she was sober? What about when she was drunk?
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3. Using Renata’s data again, create a new vector called difference that shows how much more treasure
Renata found when she was drunk and when she was not. What was the mean, median, and standard
deviation of the difference?

4. There’s an old parable that goes something like this. A man does some work for a king and needs to
be paid. Because the man loves rice (who doesn’t?!), the man offers the king two different ways that
he can be paid. You can either pay me 100 kilograms of rice, or, you can pay me as follows: get a
chessboard and put one grain of rice in the top left square. Then put 2 grains of rice on the next square,
followed by 4 grains on the next, 8 grains on the next…and so on, where the amount of rice doubles
on each square, until you get to the last square. When you are finished, give me all the grains of rice
that would (in theory), fit on the chessboard. The king, sensing that the man was an idiot for making
such a stupid offer, immediately accepts the second option. He summons a chessboard, and begins
counting out grains of rice one by one… Assuming that there are 64 squares on a chessboard, calculate
how many grains of rice the main will receive. If one grain of rice weights 1/6400 kilograms, how many
kilograms of rice did he get? Hint: If you have trouble coming up with the answer, imagine how many
grains are on the first, second, third and fourth squares, then try to create the vector that shows the
number of grains on each square. Once you come up with that vector, you can easily calculate the final
answer with the sum() function.



Chapter 7

Indexing Vectors with [ ]

boat.names boat.colors boat.ages boat.prices boat.costs
a black 143 53 52
b green 53 87 80
c pink 356 54 20
d blue 23 66 100
e blue 647 264 189
f green 24 32 12
g green 532 532 520
h yellow 43 58 68
i black 66 99 80
j black 86 132 100

# Boat sale. Creating the data vectors
boat.names <- c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")
boat.colors <- c("black", "green", "pink", "blue", "blue",

"green", "green", "yellow", "black", "black")
boat.ages <- c(143, 53, 356, 23, 647, 24, 532, 43, 66, 86)
boat.prices <- c(53, 87, 54, 66, 264, 32, 532, 58, 99, 132)
boat.costs <- c(52, 80, 20, 100, 189, 12, 520, 68, 80, 100)

# What was the price of the first boat?
boat.prices[1]
## [1] 53

# What were the ages of the first 5 boats?
boat.ages[1:5]
## [1] 143 53 356 23 647

# What were the names of the black boats?
boat.names[boat.colors == "black"]
## [1] "a" "i" "j"

# What were the prices of either green or yellow boats?
boat.prices[boat.colors == "green" | boat.colors == "yellow"]
## [1] 87 32 532 58

# Change the price of boat "s" to 100
boat.prices[boat.names == "s"] <- 100

81
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# What was the median price of black boats less than 100 years old?
median(boat.prices[boat.colors == "black" & boat.ages < 100])
## [1] 116

# How many pink boats were there?
sum(boat.colors == "pink")
## [1] 1

# What percent of boats were older than 100 years old?
mean(boat.ages < 100)
## [1] 0.6

By now you should be a whiz at applying functions like mean() and table() to vectors. However, in many
analyses, you won’t want to calculate statistics of an entire vector. Instead, you will want to access specific
subsets of values of a vector based on some criteria. For example, you may want to access values in a specific

location in the vector (i.e.; the first 10 elements) or based on some criteria within that vector (i.e.; all
values greater than 0), or based on criterion from values in a different vector (e.g.; All values of age where
sex is Female). To access specific values of a vector in R, we use indexing using brackets []. In general,
whatever you put inside the brackets, tells R which values of the vector object you want. There are two
main ways that you can use indexing to access subsets of data in a vector: numerical and logical indexing.

7.1 Numerical Indexing

With numerical indexing, you enter a vector of integers corresponding to the values in the vector you want
to access in the form a[index], where a is the vector, and index is a vector of index values. For example,

let’s use numerical indexing to get values from our boat vectors.
# What is the first boat name?
boat.names[1]
## [1] "a"

# What are the first five boat colors?
boat.colors[1:5]
## [1] "black" "green" "pink" "blue" "blue"

# What is every second boat age?
boat.ages[seq(1, 5, by = 2)]
## [1] 143 356 647

You can use any indexing vector as long as it contains integers. You can even access the same elements
multiple times:

# What is the first boat age (3 times)
boat.ages[c(1, 1, 1)]
## [1] 143 143 143

If it makes your code clearer, you can define an indexing object before doing your actual indexing. For
example, let’s define an object called my.index and use this object to index our data vector:

my.index <- 3:5
boat.names[my.index]
## [1] "c" "d" "e"
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Figure 7.1: Logical indexing. Good for R aliens and R pirates.

7.2 Logical Indexing

The second way to index vectors is with logical vectors. A logical vector is a vector that only contains
TRUE and FALSE values. In R, true values are designated with TRUE, and false values with FALSE.
When you index a vector with a logical vector, R will return values of the vector for which the indexing

vector is TRUE. If that was confusing, think about it this way: a logical vector, combined with the
brackets [ ], acts as a filter for the vector it is indexing. It only lets values of the vector pass through for

which the logical vector is TRUE.

You could create logical vectors directly using c(). For example, I could access every other value of the
following vector as follows:

a <- c(1, 2, 3, 4, 5)
a[c(TRUE, FALSE, TRUE, FALSE, TRUE)]
## [1] 1 3 5

As you can see, R returns all values of the vector a for which the logical vector is TRUE.

However, creating logical vectors using c() is tedious. Instead, it’s better to create logical vectors from
existing vectors using comparison operators like < (less than), == (equals to), and != (not equal to). A
complete list of the most common comparison operators is in Figure 7.3. For example, let’s create some

logical vectors from our boat.ages vector:
# Which ages are > 100?
boat.ages > 100
## [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

# Which ages are equal to 23?
boat.ages == 23
## [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

# Which boat names are equal to c?
boat.names == "c"
## [1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
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Figure 7.2: FALSE values in a logical vector are like lots of mini-Gandolfs. In this example, I am indexing
a vector x with a logical vector y (y for example could be x > 0, so all positive values of x are TRUE and
all negative values are FALSE). The result is a vector of length 2, which are the values of x for which the
logical vector y was true. Gandolf stopped all the values of x for which y was FALSE.

==
!=
<
<=
>
>=
|
!
%in%

equal
not equal
less than
less than or equal
greater than
greater than or equal
or
not
in the set

Figure 7.3: Logical comparison operators in R
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You can also create logical vectors by comparing a vector to another vector of the same length. When you
do this, R will compare values in the same position (e.g.; the first values will be compared, then the second
values, etc.). For example, we can compare the boat.cost and boat.price vectors to see which boats sold

for a higher price than their cost:
# Which boats had a higher price than cost?
boat.prices > boat.costs
## [1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE

# Which boats had a lower price than cost?
boat.prices < boat.costs
## [1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE

Once you’ve created a logical vector using a comparison operator, you can use it to index any vector with
the same length. Here, I’ll use logical vectors to get the prices of boats whose ages were greater than 100:
# What were the prices of boats older than 100?
boat.prices[boat.ages > 100]
## [1] 53 54 264 532

Here’s how logical indexing works step-by-step:
# Which boats are older than 100 years?
boat.ages > 100
## [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

# Writing the logical index by hand (you'd never do this!)
# Show me all of the boat prices where the logical vector is TRUE:
boat.prices[c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE)]
## [1] 53 54 264 532

# Doing it all in one step! You get the same answer:
boat.prices[boat.ages > 100]
## [1] 53 54 264 532

7.2.1 & (and), | (or), %in%

In addition to using single comparison operators, you can combine multiple logical vectors using the OR
(which looks like | and AND & commands. The OR | operation will return TRUE if any of the logical
vectors is TRUE, while the AND & operation will only return TRUE if all of the values in the logical
vectors is TRUE. This is especially powerful when you want to create a logical vector based on criteria

from multiple vectors.

For example, let’s create a logical vector indicating which boats had a price greater than 200 OR less than
100, and then use that vector to see what the names of these boats were:

# Which boats had prices greater than 200 OR less than 100?
boat.prices > 200 | boat.prices < 100
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

# What were the NAMES of these boats
boat.names[boat.prices > 200 | boat.prices < 100]
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i"

You can combine as many logical vectors as you want (as long as they all have the same length!):
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# Boat names of boats with a color of black OR with a price > 100
boat.names[boat.colors == "black" | boat.prices > 100]
## [1] "a" "e" "g" "i" "j"

# Names of blue boats with a price greater than 200
boat.names[boat.colors == "blue" & boat.prices > 200]
## [1] "e"

You can combine as many logical vectors as you want to create increasingly complex selection criteria. For
example, the following logical vector returns TRUE for cases where the boat colors are black OR brown,

AND where the price was less than 100:
# Which boats were eithe black or brown, AND had a price less than 100?
(boat.colors == "black" | boat.colors == "brown") & boat.prices < 100
## [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

# What were the names of these boats?
boat.names[(boat.colors == "black" | boat.colors == "brown") & boat.prices < 100]
## [1] "a" "i"

When using multiple criteria, make sure to use parentheses when appropriate. If I didn’t use parentheses
above, I would get a different answer.

The %in% operation helps you to easily create multiple OR arguments.Imagine you have a vector of
categorical data that can take on many different values. For example, you could have a vector x indicating

people’s favorite letters.
x <- c("a", "t", "a", "b", "z")

Now, let’s say you want to create a logical vector indicating which values are either a or b or c or d. You
could create this logical vector with multiple | (OR) commands:

x == "a" | x == "b" | x == "c" | x == "d"
## [1] TRUE FALSE TRUE TRUE FALSE

However, this takes a long time to write. Thankfully, the %in% operation allows you to combine multiple
OR comparisons much faster. To use the %in% function, just put it in between the original vector, and a
new vector of possible values. The %in% function goes through every value in the vector x, and returns

TRUE if it finds it in the vector of possible values – otherwise it returns FALSE.
x %in% c("a", "b", "c", "d")
## [1] TRUE FALSE TRUE TRUE FALSE

As you can see, the result is identical to our previous result.

7.2.2 Counts and percentages from logical vectors

Many (if not all) R functions will interpret TRUE values as 1 and FALSE values as 0. This allows us to
easily answer questions like “How many values in a data vector are greater than 0?” or “What percentage

of values are equal to 5?” by applying the sum() or mean() function to a logical vector.

We’ll start with a vector x of length 10, containing 3 positive numbers and 5 negative numbers.
x <- c(1, 2, 3, -5, -5, -5, -5, -5)

We can create a logical vector to see which values are greater than 0:
x > 0
## [1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
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Now, we’ll use sum() and mean() on that logical vector to see how many of the values in x are positive,
and what percent are positive. We should find that there are 5 TRUE values, and that 50% of the values (5

/ 10) are TRUE.
sum(x > 0)
## [1] 3
mean(x > 0)
## [1] 0.38

This is a really powerful tool. Pretty much any time you want to answer a question like “How many of X
are Y” or “What percent of X are Y”, you use sum() or mean() function with a logical vector as an

argument.

7.2.3 Additional Logical functions

R has lots of special functions that take vectors as arguments, and return logical vectors based on multiple
criteria. For example, you can use the is.na() function to test which values of a vector are missing. Table

7.1 contains some that I frequently use:

Table 7.1: Functions to create and use logical vectors.

Function Description Example Result
is.na(x) Which values in x are

NA?
is.na(c(2, NA, 5)) FALSE,

TRUE,
FALSE

is.finite(x) Which values in x are
numbers?

is.finite(c(NA, 89, 0)) FALSE,
TRUE,
TRUE

duplicated(x) Which values in x are
duplicated?

duplicated(c(1, 4, 1, 2)) FALSE,
FALSE,
TRUE,
FALSE

which(x) Which values in x are
TRUE?

which(c(TRUE, FALSE, TRUE)) 1, 3

Logical vectors aren’t just good for indexing, you can also use them to figure out which values in a vector
satisfy some criteria. To do this, use the function which(). If you apply the function which() to a logical

vector, R will tell you which values of the index are TRUE. For example:
# A vector of sex information
sex <- c("m", "m", "f", "m", "f", "f")

# Which values of sex are m?
which(sex == "m")
## [1] 1 2 4

# Which values of sex are f?
which(sex == "f")
## [1] 3 5 6
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7.3 Changing values of a vector

Now that you know how to index a vector, you can easily change specific values in a vector using the
assignment (<-) operation. To do this, just assign a vector of new values to the indexed values of the

original vector:

Let’s create a vector a which contains 10 1s:
a <- rep(1, 10)

Now, let’s change the first 5 values in the vector to 9s by indexing the first five values, and assigning the
value of 9:

a[1:5] <- 9
a
## [1] 9 9 9 9 9 1 1 1 1 1

Now let’s change the last 5 values to 0s. We’ll index the values 6 through 10, and assign a value of 0.
a[6:10] <- 0
a
## [1] 9 9 9 9 9 0 0 0 0 0

Of course, you can also change values of a vector using a logical indexing vector. For example, let’s say you
have a vector of numbers that should be from 1 to 10. If values are outside of this range, you want to set

them to either the minimum (1) or maximum (10) value:
# x is a vector of numbers that should be from 1 to 10
x <- c(5, -5, 7, 4, 11, 5, -2)

# Assign values less than 1 to 1
x[x < 1] <- 1

# Assign values greater than 10 to 10
x[x > 10] <- 10

# Print the result!
x
## [1] 5 1 7 4 10 5 1

As you can see, our new values of x are now never less than 1 or greater than 10!

A note on indexing…

Technically, when you assign new values to a vector, you should always assign a vector of the same length
as the number of values that you are updating. For example, given a vector a with 10 1s:

a <- rep(1, 10)

To update the first 5 values with 5 9s, we should assign a new vector of 5 9s
a[1:5] <- c(9, 9, 9, 9, 9)
a
## [1] 9 9 9 9 9 1 1 1 1 1

However, if we repeat this code but just assign a single 9, R will repeat the value as many times as
necessary to fill the indexed value of the vector. That’s why the following code still works:

a[1:5] <- 9
a
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## [1] 9 9 9 9 9 1 1 1 1 1

In other languages this code wouldn’t work because we’re trying to replace 5 values with just 1. However,
this is a case where R bends the rules a bit.

7.3.1 Ex: Fixing invalid responses to a Happiness survey

Assigning and indexing is a particularly helpful tool when, for example, you want to remove invalid values
in a vector before performing an analysis. For example, let’s say you asked 10 people how happy they were

on a scale of 1 to 5 and received the following responses:
happy <- c(1, 4, 2, 999, 2, 3, -2, 3, 2, 999)

As you can see, we have some invalid values (999 and -2) in this vector. To remove them, we’ll use logical
indexing to change the invalid values (999 and -2) to NA. We’ll create a logical vector indicating which

values of happy are invalid using the %in% operation. Because we want to see which values are invalid, we’ll
add the == FALSE condition (If we don’t, the index will tell us which values are valid).

# Which values of happy are NOT in the set 1:5?
invalid <- (happy %in% 1:5) == FALSE
invalid
## [1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

Now that we have a logical index invalid telling us which values are invalid (that is, not in the set 1
through 5), we’ll index happy with invalid, and assign the invalid values as NA:

# Convert any invalid values in happy to NA
happy[invalid] <- NA
happy
## [1] 1 4 2 NA 2 3 NA 3 2 NA

We can also recode all the invalid values of happy in one line as follows:
# Convert all values of happy that are NOT integers from 1 to 5 to NA
happy[(happy %in% 1:5) == FALSE] <- NA

As you can see, happy now has NAs for previously invalid values. Now we can take a mean() of the vector
and see the mean of the valid responses.

# Include na.rm = TRUE to ignore NA values
mean(happy, na.rm = TRUE)
## [1] 2.4
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7.4 Test your R Might!: Movie data

Table 7.2 contains data about 10 of my favorite movies.

0. Create new data vectors for each column.

1. What is the name of the 10th movie in the list?

2. What are the genres of the first 4 movies?

3. Some joker put Spice World in the movie names – it should be “The Naked Gun” Please correct the
name.

4. What were the names of the movies made before 1990?

5. How many movies were Dramas? What percent of the 10 movies were Dramas?

6. One of the values in the time vector is invalid. Convert any invalid values in this vector to NA. Then,
calculate the mean movie time

7. What were the names of the Comedy movies? What were their boxoffice totals? (Two separate
questions)

8. What were the names of the movies that made less than $50 Million dollars AND were Comedies?

9. What was the median boxoffice revenue of movies rated either G or PG?

10. What percent of the movies were rated R OR were comedies?
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Table 7.2: Some of my favorite movies

movie year boxoffice genre time rating
Whatever Works 2009 35.0 Comedy 92 PG-13
It Follows 2015 15.0 Horror 97 R
Love and Mercy 2015 15.0 Drama 120 R
The Goonies 1985 62.0 Adventure 90 PG
Jiro Dreams of Sushi 2012 3.0 Documentary 81 G
There Will be Blood 2007 10.0 Drama 158 R
Moon 2009 321.0 Science Fiction 97 R
Spice World 1988 79.0 Comedy -84 PG-13
Serenity 2005 39.0 Science Fiction 119 PG-13
Finding Vivian Maier 2014 1.5 Documentary 84 Unrated
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Chapter 8

Matrices and Dataframes

# -----------------------------
# Basic dataframe operations
# -----------------------------

# Create a dataframe of boat sale data called bsale
bsale <- data.frame(name = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"),

color = c("black", "green", "pink", "blue", "blue",
"green", "green", "yellow", "black", "black"),

age = c(143, 53, 356, 23, 647, 24, 532, 43, 66, 86),
price = c(53, 87, 54, 66, 264, 32, 532, 58, 99, 132),
cost = c(52, 80, 20, 100, 189, 12, 520, 68, 80, 100),
stringsAsFactors = FALSE) # Don't convert strings to factors!

# Explore the bsale dataset:
head(bsale) # Show me the first few rows
str(bsale) # Show me the structure of the data
View(bsale) # Open the data in a new window
names(bsale) # What are the names of the columns?
nrow(bsale) # How many rows are there in the data?

# Calculating statistics from column vectors
mean(bsale$age) # What was the mean age?
table(bsale$color) # How many boats were there of each color?
max(bsale$price) # What was the maximum price?

# Adding new columns
bsale$id <- 1:nrow(bsale)
bsale$age.decades <- bsale$age / 10
bsale$profit <- bsale$price - bsale$cost

# What was the mean price of green boats?
with(bsale, mean(price[color == "green"]))

# What were the names of boats older than 100 years?
with(bsale, name[age > 100])

# What percent of black boats had a positive profit?

93
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Figure 8.1: Did you actually think I could talk about matrices without a Matrix reference?!

with(subset(bsale, color == "black"), mean(profit > 0))

# Save only the price and cost columns in a new dataframe
bsale.2 <- bsale[c("price", "cost")]

# Change the names of the columns to "p" and "c"
names(bsale.2) <- c("p", "c")

# Create a dataframe called old.black.bsale containing only data from black boats older than 50 years
old.black.bsale <- subset(bsale, color == "black" & age > 50)

8.1 What are matrices and dataframes?

By now, you should be comfortable with scalar and vector objects. However, you may have noticed that
neither object types are appropriate for storing lots of data – such as the results of a survey or experiment.

Thankfully, R has two object types that represent large data structures much better: matrices and
dataframes.

Matrices and dataframes are very similar to spreadsheets in Excel or data files in SPSS. Every matrix or
dataframe contains rows (call that number m) and columns (n). Thus, wile a vector has 1 dimension (its
length), matrices and dataframes both have 2-dimensions – representing their width and height. You can

think of a matrix or dataframe as a combination of n vectors, where each vector has a length of m.

While matrices and dataframes look very similar, they aren’t exactly the same. While a matrix can contain
either character or numeric columns, a dataframe can contain both numeric and character columns.

Because dataframes are more flexible, most real-world datasets, such as surveys containing both numeric
(e.g.; age, response times) and character (e.g.; sex, favorite movie) data, will be stored as dataframes in R.

WTF – If dataframes are more flexible than matrices, why do we use matrices at all? The answer is that,
because they are simpler, matrices take up less computational space than dataframes. Additionally, some

functions require matrices as inputs to ensure that they work correctly.

In the next section, we’ll cover the most common functions for creating matrix and dataframe objects.
We’ll then move on to functions that take matrices and dataframes as inputs.
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scalar Vector Matrix / Data Frame

Figure 8.2: scalar, Vector, MATRIX

8.2 Creating matrices and dataframes

There are a number of ways to create your own matrix and dataframe objects in R. The most common
functions are presented in Table 8.1. Because matrices and dataframes are just combinations of vectors,

each function takes one or more vectors as inputs, and returns a matrix or a dataframe.

Table 8.1: Functions to create matrices and dataframes.

Function Description Example
cbind(a, b, c) Combine vectors as columns

in a matrix
cbind(1:5, 6:10, 11:15)

rbind(a, b, c) Combine vectors as rows in
a matrix

rbind(1:5, 6:10, 11:15)

matrix(x, nrow,
ncol, byrow)

Create a matrix from a
vector x

matrix(x = 1:12, nrow = 3, ncol = 4)

data.frame() Create a dataframe from
named columns

data.frame("age" = c(19, 21), sex =
c("m", "f"))

8.2.1 cbind(), rbind()

cbind() and rbind() both create matrices by combining several vectors of the same length. cbind()
combines vectors as columns, while rbind() combines them as rows.

Let’s use these functions to create a matrix with the numbers 1 through 30. First, we’ll create three vectors
of length 5, then we’ll combine them into one matrix. As you will see, the cbind() function will combine

the vectors as columns in the final matrix, while the rbind() function will combine them as rows.
x <- 1:5
y <- 6:10
z <- 11:15

# Create a matrix where x, y and z are columns
cbind(x, y, z)
## x y z
## [1,] 1 6 11
## [2,] 2 7 12
## [3,] 3 8 13
## [4,] 4 9 14
## [5,] 5 10 15

# Create a matrix where x, y and z are rows
rbind(x, y, z)
## [,1] [,2] [,3] [,4] [,5]
## x 1 2 3 4 5
## y 6 7 8 9 10
## z 11 12 13 14 15

8.2.2 matrix()

Remember: Matrices can either contain numbers or character vectors, not both!. If you try to create a
matrix with both numbers and characters, it will turn all the numbers into characters:
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# Creating a matrix with numeric and character columns will make everything a character:

cbind(c(1, 2, 3, 4, 5),
c("a", "b", "c", "d", "e"))

## [,1] [,2]
## [1,] "1" "a"
## [2,] "2" "b"
## [3,] "3" "c"
## [4,] "4" "d"
## [5,] "5" "e"

The matrix() function creates a matrix form a single vector of data. The function has 4 main inputs:
data – a vector of data, nrow – the number of rows you want in the matrix, and ncol – the number of

columns you want in the matrix, and byrow – a logical value indicating whether you want to fill the matrix
by rows. Check out the help menu for the matrix function (‘?matrix) to see some additional inputs.

Let’s use the matrix() function to re-create a matrix containing the values from 1 to 10.
# Create a matrix of the integers 1:10,
# with 5 rows and 2 columns

matrix(data = 1:10,
nrow = 5,
ncol = 2)

## [,1] [,2]
## [1,] 1 6
## [2,] 2 7
## [3,] 3 8
## [4,] 4 9
## [5,] 5 10

# Now with 2 rows and 5 columns
matrix(data = 1:10,

nrow = 2,
ncol = 5)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10

# Now with 2 rows and 5 columns, but fill by row instead of columns
matrix(data = 1:10,

nrow = 2,
ncol = 5,
byrow = TRUE)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 6 7 8 9 10

8.2.3 data.frame()

To create a dataframe from vectors, use the data.frame() function. The data.frame() function works
very similarly to cbind() – the only difference is that in data.frame() you specify names to each of the

columns as you define them. Again, unlike matrices, dataframes can contain both string vectors and
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numeric vectors within the same object. Because they are more flexible than matrices, most large datasets
in R will be stored as dataframes.

Let’s create a simple dataframe called survey using the data.frame() function with a mixture of text and
numeric columns:

# Create a dataframe of survey data

survey <- data.frame("index" = c(1, 2, 3, 4, 5),
"sex" = c("m", "m", "m", "f", "f"),
"age" = c(99, 46, 23, 54, 23))

survey
## index sex age
## 1 1 m 99
## 2 2 m 46
## 3 3 m 23
## 4 4 f 54
## 5 5 f 23

8.2.3.1 stringsAsFactors = FALSE

There is one key argument to data.frame() and similar functions called stringsAsFactors. By default,
the data.frame() function will automatically convert any string columns to a specific type of object called
a factor in R. A factor is a nominal variable that has a well-specified possible set of values that it can take

on. For example, one can create a factor sex that can only take on the values "male" and "female".

However, as I’m sure you’ll discover, having R automatically convert your string data to factors can lead to
lots of strange results. For example: if you have a factor of sex data, but then you want to add a new value
called other, R will yell at you and return an error. I hate, hate, HATE when this happens. While there
are very, very rare cases when I find factors useful, I almost always don’t want or need them. For this

reason, I avoid them at all costs.

To tell R to not convert your string columns to factors, you need to include the argument
stringsAsFactors = FALSE when using functions such as data.frame()

For example, let’s look at the classes of the columns in the dataframe survey that we just created using
the str() function (we’ll go over this function in section XXX)

# Show me the structure of the survey dataframe
str(survey)
## 'data.frame': 5 obs. of 3 variables:
## $ index: num 1 2 3 4 5
## $ sex : Factor w/ 2 levels "f","m": 2 2 2 1 1
## $ age : num 99 46 23 54 23

AAAAA!!! R has converted the column sex to a factor with only two possible levels! This can cause major
problems later! Let’s create the dataframe again using the argument stringsAsFactors = FALSE to make

sure that this doesn’t happen:
# Create a dataframe of survey data WITHOUT factors
survey <- data.frame("index" = c(1, 2, 3, 4, 5),

"sex" = c("m", "m", "m", "f", "f"),
"age" = c(99, 46, 23, 54, 23),
stringsAsFactors = FALSE)

Now let’s look at the new version and make sure there are no factors:
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# Print the result (it looks the same as before)
survey
## index sex age
## 1 1 m 99
## 2 2 m 46
## 3 3 m 23
## 4 4 f 54
## 5 5 f 23

# Look at the structure: no more factors!
str(survey)
## 'data.frame': 5 obs. of 3 variables:
## $ index: num 1 2 3 4 5
## $ sex : chr "m" "m" "m" "f" ...
## $ age : num 99 46 23 54 23

8.2.4 Dataframes pre-loaded in R

Now you know how to use functions like cbind() and data.frame() to manually create your own matrices
and dataframes in R. However, for demonstration purposes, it’s frequently easier to use existing dataframes
rather than always having to create your own. Thankfully, R has us covered: R has several datasets that
come pre-installed in a package called datasets – you don’t need to install this package, it’s included in
the base R software. While you probably won’t make any major scientific discoveries with these datasets,
they allow all R users to test and compare code on the same sets of data. To see a complete list of all the
datasets included in the datasets package, run the code: library(help = "datasets"). Table 8.2 shows

a few datasets that we will be using in future examples:

Table 8.2: A few datasets you can access in R.

Dataset Description Rows Columns
ChickWeight Experiment on the effect of diet on early

growth of chicks.
578 4

InsectSprays The counts of insects in agricultural
experimental units treated with different
insecticides.

72 2

ToothGrowth Length of odontoblasts (cells responsible
for tooth growth) in 60 guinea pigs.

60 3

PlantGrowth Results from an experiment to compare
yields (as measured by dried weight of
plants) obtained under a control and
two different treatment conditions.

30 2

8.3 Matrix and dataframe functions

R has lots of functions for viewing matrices and dataframes and returning information about them. Table
8.3 shows some of the most common:
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Table 8.3: Important functions for understanding matrices and
dataframes.

Function Description
head(x), tail(x) Print the first few rows (or last few rows).
View(x) Open the entire object in a new window
nrow(x), ncol(x), dim(x) Count the number of rows and columns
rownames(), colnames(),
names()

Show the row (or column) names

str(x), summary(x) Show the structure of the dataframe (ie.,
dimensions and classes) and summary
statistics

8.3.1 head(), tail(), View()

To see the first few rows of a dataframe, use head(), to see the last few rows, use tail()
# head() shows the first few rows
head(ChickWeight)
## Grouped Data: weight ~ Time | Chick
## weight Time Chick Diet
## 1 42 0 1 1
## 2 51 2 1 1
## 3 59 4 1 1
## 4 64 6 1 1
## 5 76 8 1 1
## 6 93 10 1 1

# tail() shows he last few rows
tail(ChickWeight)
## Grouped Data: weight ~ Time | Chick
## weight Time Chick Diet
## 573 155 12 50 4
## 574 175 14 50 4
## 575 205 16 50 4
## 576 234 18 50 4
## 577 264 20 50 4
## 578 264 21 50 4

To see an entire dataframe in a separate window that looks like spreadsheet, use View()
# View() opens the entire dataframe in a new window
View(ChickWeight)

When you run View(), you’ll see a new window like the one in Figure 8.3

8.3.2 summary(), str()

To get summary statistics on all columns in a dataframe, use the summary() function:
# Print summary statistics of ToothGrowth to the console
summary(ToothGrowth)
## len supp dose len.cm index
## Min. : 4 OJ:30 Min. :0.50 Min. :0.4 Min. : 1
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Figure 8.3: Screenshot of the window from View(ChickWeight). You can use this window to visually sort
and filter the data to get an idea of how it looks, but you can’t add or remove data and nothing you do will
actually change the dataframe.

## 1st Qu.:13 VC:30 1st Qu.:0.50 1st Qu.:1.3 1st Qu.:16
## Median :19 Median :1.00 Median :1.9 Median :30
## Mean :19 Mean :1.17 Mean :1.9 Mean :30
## 3rd Qu.:25 3rd Qu.:2.00 3rd Qu.:2.5 3rd Qu.:45
## Max. :34 Max. :2.00 Max. :3.4 Max. :60

To learn about the classes of columns in a dataframe, in addition to some other summary information, use
the str() (structure) function. This function returns information for more advanced R users, so don’t

worry if the output looks confusing.
# Print additional information about ToothGrowth to the console
str(ToothGrowth)
## 'data.frame': 60 obs. of 5 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp : Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose : num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
## $ len.cm: num 0.42 1.15 0.73 0.58 0.64 1 1.12 1.12 0.52 0.7 ...
## $ index : int 1 2 3 4 5 6 7 8 9 10 ...

Here, we can see that ToothGrowth is a dataframe with 60 observations (ie., rows) and 5 variables (ie.,
columns). We can also see that the column names are index, len, len.cm, supp, and dose

8.4 Dataframe column names

One of the nice things about dataframes is that each column will have a name. You can use these name to
access specific columns by name without having to know which column number it is.

To access the names of a dataframe, use the function names(). This will return a string vector with the
names of the dataframe. Let’s use names() to get the names of the ToothGrowth dataframe:

# What are the names of columns in the ToothGrowth dataframe?
names(ToothGrowth)
## [1] "len" "supp" "dose" "len.cm" "index"
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To access a specific column in a dataframe by name, you use the $ operator in the form df$name where df
is the name of the dataframe, and name is the name of the column you are interested in. This operation

will then return the column you want as a vector.

Let’s use the $ operator to get a vector of just the length column (called len) from the ToothGrowth
dataframe:

# Return the len column of ToothGrowth
ToothGrowth$len
## [1] 4.2 11.5 7.3 5.8 6.4 10.0 11.2 11.2 5.2 7.0 16.5 16.5 15.2 17.3
## [15] 22.5 17.3 13.6 14.5 18.8 15.5 23.6 18.5 33.9 25.5 26.4 32.5 26.7 21.5
## [29] 23.3 29.5 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7 19.7 23.3
## [43] 23.6 26.4 20.0 25.2 25.8 21.2 14.5 27.3 25.5 26.4 22.4 24.5 24.8 30.9
## [57] 26.4 27.3 29.4 23.0

Because the $ operator returns a vector, you can easily calculate descriptive statistics on columns of a
dataframe by applying your favorite vector function (like mean() or table()) to a column using $. Let’s

calculate the mean tooth length with mean(), and the frequency of each supplement with table():
# What is the mean of the len column of ToothGrowth?
mean(ToothGrowth$len)
## [1] 19

# Give me a table of the supp column of ToothGrowth.
table(ToothGrowth$supp)
##
## OJ VC
## 30 30

If you want to access several columns by name, you can forgo the $ operator, and put a character vector of
column names in brackets:

# Give me the len AND supp columns of ToothGrowth
head(ToothGrowth[c("len", "supp")])
## len supp
## 1 4.2 VC
## 2 11.5 VC
## 3 7.3 VC
## 4 5.8 VC
## 5 6.4 VC
## 6 10.0 VC

8.4.1 Adding new columns

You can add new columns to a dataframe using the $ and assignment <- operators. To do this, just use the
df$name notation and assign a new vector of data to it.

For example, let’s create a dataframe called survey with two columns: index and age:
# Create a new dataframe called survey
survey <- data.frame("index" = c(1, 2, 3, 4, 5),

"age" = c(24, 25, 42, 56, 22))

survey
## index age
## 1 1 24
## 2 2 25
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## 3 3 42
## 4 4 56
## 5 5 22

Now, let’s add a new column called sex with a vector of sex data:
# Add a new column called sex to survey
survey$sex <- c("m", "m", "f", "f", "m")

Here’s the result
# survey with new sex column
survey
## index age sex
## 1 1 24 m
## 2 2 25 m
## 3 3 42 f
## 4 4 56 f
## 5 5 22 m

As you can see, survey has a new column with the name sex with the values we specified earlier.

8.4.2 Changing column names

To change the name of a column in a dataframe, just use a combination of the names() function, indexing,
and reassignment.

# Change name of 1st column of df to "a"
names(df)[1] <- "a"

# Change name of 2nd column of df to "b"
names(df)[2] <- "b"

For example, let’s change the name of the first column of survey from index to participant.number
# Change the name of the first column of survey to "participant.number"
names(survey)[1] <- "participant.number"
survey
## participant.number age sex
## 1 1 24 m
## 2 2 25 m
## 3 3 42 f
## 4 4 56 f
## 5 5 22 m

Warning!!!: Change column names with logical indexing to avoid errors!

Now, there is one major potential problem with my method above – I had to manually enter the value of 1.
But what if the column I want to change isn’t in the first column (either because I typed it wrong or

because the order of the columns changed)? This could lead to serious problems later on.

To avoid these issues, it’s better to change column names using a logical vector using the format
names(df)[names(df) == "old.name"] <- "new.name". Here’s how to read this: “Change the names of

df, but only where the original name was "old.name", to "new.name".

Let’s use logical indexing to change the name of the column survey$age to survey$years:
# Change the column name from age to age.years
names(survey)[names(survey) == "age"] <- "years"
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Figure 8.4: Slicing and dicing data. The turnip represents your data, and the knife represents indexing with
brackets, or subsetting functions like subset(). The red-eyed clown holding the knife is just off camera.

survey
## participant.number years sex
## 1 1 24 m
## 2 2 25 m
## 3 3 42 f
## 4 4 56 f
## 5 5 22 m

8.5 Slicing dataframes

Once you have a dataset stored as a matrix or dataframe in R, you’ll want to start accessing specific parts
of the data based on some criteria. For example, if your dataset contains the result of an experiment

comparing different experimental groups, you’ll want to calculate statistics for each experimental group
separately. The process of selecting specific rows and columns of data based on some criteria is commonly

known as slicing.

8.5.1 Slicing with [, ]

Just like vectors, you can access specific data in dataframes using brackets. But now, instead of just using
one indexing vector, we use two indexing vectors: one for the rows and one for the columns. To do this, use

the notation data[rows, columns], where rows and columns are vectors of integers.
# Return row 1
df[1, ]

# Return column 5
df[, 5]

# Rows 1:5 and column 2
df[1:5, 2]
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Figure 8.5: Ah the ToothGrowth dataframe. Yes, one of the dataframes stored in R contains data from an
experiment testing the effectiveness of different doses of Vitamin C supplements on the growth of guinea pig
teeth. The images I found by Googling “guinea pig teeth” were all pretty horrifying, so let’s just go with
this one.

Table 8.4: First few rows of the ToothGrowth dataframe.

len supp dose len.cm index
4.2 VC 0.5 0.42 1
11.5 VC 0.5 1.15 2
7.3 VC 0.5 0.73 3
5.8 VC 0.5 0.58 4
6.4 VC 0.5 0.64 5
10.0 VC 0.5 1.00 6

Let’s try indexing the ToothGrowth dataframe. Again, the ToothGrowth dataframe represents the results
of a study testing the effectiveness of different types of supplements on the length of guinea pig’s teeth.

First, let’s look at the entries in rows 1 through 5, and column 1:
# Give me the rows 1-6 and column 1 of ToothGrowth
ToothGrowth[1:6, 1]
## [1] 4.2 11.5 7.3 5.8 6.4 10.0

Because the first column is len, the primary dependent measure, this means that the tooth lengths in the
first 6 observations are 4.2, 11.5, 7.3, 5.8, 6.4, 10.

Of course, you can index matrices and dataframes with longer vectors to get more data. Now, let’s look at
the first 3 rows of columns 1 and 3:

# Give me rows 1-3 and columns 1 and 3 of ToothGrowth
ToothGrowth[1:3, c(1,3)]
## len dose
## 1 4.2 0.5
## 2 11.5 0.5
## 3 7.3 0.5

If you want to look at an entire row or an entire column of a matrix or dataframe, you can leave the
corresponding index blank. For example, to see the entire 1st row of the ToothGrowth dataframe, we can

set the row index to 1, and leave the column index blank:
# Give me the 1st row (and all columns) of ToothGrowth
ToothGrowth[1, ]
## len supp dose len.cm index
## 1 4.2 VC 0.5 0.42 1

Similarly, to get the entire 2nd column, set the column index to 2 and leave the row index blank:
# Give me the 2nd column (and all rows) of ToothGrowth
ToothGrowth[, 2]
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Figure 8.6: The subset() function is like a lightsaber. An elegant function from a more civilized age.

## [1] VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC VC
## [24] VC VC VC VC VC VC VC OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ
## [47] OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ OJ
## Levels: OJ VC

Many, if not all, of the analyses you will be doing will be on subsets of data, rather than entire datasets.
For example, if you have data from an experiment, you may wish to calculate the mean of participants in
one group separately from another. To do this, we’ll use subsetting – selecting subsets of data based on
some criteria. To do this, we can use one of two methods: indexing with logical vectors, or the subset()

function. We’ll start with logical indexing first.

8.5.2 Slicing with logical vectors

Indexing dataframes with logical vectors is almost identical to indexing single vectors. First, we create a
logical vector containing only TRUE and FALSE values. Next, we index a dataframe (typically the rows)

using the logical vector to return only values for which the logical vector is TRUE.

For example, to create a new dataframe called ToothGrowth.VC containing only data from the guinea pigs
who were given the VC supplement, we’d run the following code:

# Create a new df with only the rows of ToothGrowth
# where supp equals VC
ToothGrowth.VC <- ToothGrowth[ToothGrowth$supp == "VC", ]

Of course, just like we did with vectors, we can make logical vectors based on multiple criteria – and then
index a dataframe based on those criteria. For example, let’s create a dataframe called ToothGrowth.OJ.a

that contains data from the guinea pigs who were given an OJ supplement with a dose less than 1.0:
# Create a new df with only the rows of ToothGrowth
# where supp equals OJ and dose < 1

ToothGrowth.OJ.a <- ToothGrowth[ToothGrowth$supp == "OJ" &
ToothGrowth$dose < 1, ]

Indexing with brackets is the standard way to slice and dice dataframes. However, the code can get a bit
messy. A more elegant method is to use the subset() function.
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8.5.3 Slicing with subset()

The subset() function is one of the most useful data management functions in R. It allows you to slice
and dice datasets just like you would with brackets, but the code is much easier to write: Table 8.5 shows

the main arguments to the subset() function:

Table 8.5: Main arguments for the subset() function.

Argument Description
x A dataframe you want to subset
subset A logical vector indicating the rows to keep
select The columns you want to keep

Let’s use the subset() function to create a new, subsetted dataset from the ToothGrowth dataframe
containing data from guinea pigs who had a tooth length less than 20cm (len < 20), given the OJ

supplement (supp == "OJ"), and with a dose greater than or equal to 1 (dose >= 1):
# Get rows of ToothGrowth where len < 20 AND supp == "OJ" AND dose >= 1
subset(x = ToothGrowth,

subset = len < 20 &
supp == "OJ" &
dose >= 1)

## len supp dose len.cm index
## 41 20 OJ 1 2.0 41
## 49 14 OJ 1 1.4 49

As you can see, there were only two cases that satisfied all 3 of our selection criteria.

In the example above, I didn’t specify an input to the select argument because I wanted all columns.
However, if you just want certain columns, you can just name the columns you want in the select

argument:
# Get rows of ToothGrowth where len > 30 AND supp == "VC", but only return the len and dose columns
subset(x = ToothGrowth,

subset = len > 30 & supp == "VC",
select = c(len, dose))

## len dose
## 23 34 2
## 26 32 2

8.6 Combining slicing with functions

Now that you know how to slice and dice dataframes using indexing and subset(), you can easily combine
slicing and dicing with statistical functions to calculate summary statistics on groups of data. For example,
the following code will calculate the mean tooth length of guinea pigs with the OJ supplement using the

subset() function:
# What is the mean tooth length of Guinea pigs given OJ?

# Step 1: Create a subsettted dataframe called oj

oj <- subset(x = ToothGrowth,
subset = supp == "OJ")
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# Step 2: Calculate the mean of the len column from
# the new subsetted dataset

mean(oj$len)
## [1] 21

We can also get the same solution using logical indexing:
# Step 1: Create a subsettted dataframe called oj
oj <- ToothGrowth[ToothGrowth$supp == "OJ",]

# Step 2: Calculate the mean of the len column from
# the new subsetted dataset
mean(oj$len)
## [1] 21

Or heck, we can do it all in one line by only referring to column vectors:
mean(ToothGrowth$len[ToothGrowth$supp == "OJ"])
## [1] 21

As you can see, R allows for many methods to accomplish the same task. The choice is up to you.

8.6.1 with()

The with() function helps to save you some typing when you are using multiple columns from a dataframe.
Specifically, it allows you to specify a dataframe (or any other object in R) once at the beginning of a line –
then, for every object you refer to in the code in that line, R will assume you’re referring to that object in

an expression.

For example, let’s create a dataframe called health with some health information:
health <- data.frame("age" = c(32, 24, 43, 19, 43),

"height" = c(1.75, 1.65, 1.50, 1.92, 1.80),
"weight" = c(70, 65, 62, 79, 85))

health
## age height weight
## 1 32 1.8 70
## 2 24 1.6 65
## 3 43 1.5 62
## 4 19 1.9 79
## 5 43 1.8 85

Now let’s say we want to add a new column called bmi which represents a person’s body mass index. The
formula for bmi is bmi = height

weight2 × 703. If we wanted to calculate the bmi of each person, we’d need to
write health$height / health$weight ˆ 2:

# Calculate bmi
health$height / health$weight ^ 2
## [1] 0.00036 0.00039 0.00039 0.00031 0.00025

As you can see, we have to retype the name of the dataframe for each column. However, using the with()
function, we can make it a bit easier by saying the name of the dataframe once.
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Figure 8.7: This is a lesser-known superhero named Maggott who could ’transform his body to get su-
perhuman strength and endurance, but to do so he needed to release two huge parasitic worms from his
stomach cavity and have them eat things’ (http://heavy.com/comedy/2010/04/the-20-worst-superheroes/).
Yeah...I’m shocked this guy wasn’t a hit.

# Save typing by using with()
with(health, height / weight ^ 2)
## [1] 0.00036 0.00039 0.00039 0.00031 0.00025

As you can see, the results are identical. In this case, we didn’t save so much typing. But if you are doing
many calculations, then with() can save you a lot of typing. For example, contrast these two lines of code

that perform identical calculations:
# Long code
health$weight + health$height / health$age + 2 * health$height
## [1] 74 68 65 83 89

# Short code that does the same thing
with(health, weight + height / age + 2 * height)
## [1] 74 68 65 83 89

8.7 Test your R might! Pirates and superheroes

The following table shows the results of a survey of 10 pirates. In addition to some basic demographic
information, the survey asked each pirate “What is your favorite superhero?”” and “How many tattoos do

you have?””
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Name Sex Age Superhero Tattoos
Astrid F 30 Batman 11
Lea F 25 Superman 15
Sarina F 25 Batman 12
Remon M 29 Spiderman 5
Letizia F 22 Batman 65
Babice F 22 Antman 3
Jonas M 35 Batman 9
Wendy F 19 Superman 13
Niveditha F 32 Maggott 900
Gioia F 21 Superman 0

1. Combine the data into a single dataframe. Complete all the following exercises from the dataframe!

2. What is the median age of the 10 pirates?

3. What was the mean age of female and male pirates separately?

4. What was the most number of tattoos owned by a male pirate?

5. What percent of pirates under the age of 32 were female?

6. What percent of female pirates are under the age of 32?

7. Add a new column to the dataframe called tattoos.per.year which shows how many tattoos each
pirate has for each year in their life.

8. Which pirate had the most number of tattoos per year?

9. What are the names of the female pirates whose favorite superhero is Superman?

10. What was the median number of tattoos of pirates over the age of 20 whose favorite superhero is
Spiderman?
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Chapter 9

Importing, saving and managing data

Remember way back in Chapter 2 (you know…back when we first met…we were so young and full of
excitement then…sorry, now I’m getting emotional…let’s move on… ) when I said everything in R is an

object? Well, that’s still true. In this chapter, we’ll cover the basics of R object management. We’ll cover
how to load new objects like external datasets into R, how to manage the objects that you already have,

and how to export objects from R into external files that you can share with other people or store for your
own future use.

9.1 Workspace management functions

Here are some functions helpful for managing your workspace that we’ll go over in this chapter:

Table 9.1: Functions for managing your workspace, working direc-
tory, and writing data from R as .txt or .RData files, and reading
files into R

Code Description
ls() Display all objects in the current workspace
rm(a, b, ..) Removes the objects a, b… from your workspace
rm(list = ls()) Removes all objects in your workspace
getwd() Returns the current working directory
setwd(file = "dir) Changes the working directory to a specified file

location
list.files() Returns the names of all files in the working

directory
write.table(x, file =
"mydata.txt", sep)

writes the object x to a text file called
mydata.txt. Define how the columns will be
separated with sep (e.g.; sep = "," for a
comma–separated file, and sep = \t" for a
tab–separated file).

save(a, b, .., file =
"myimage.RData)

Saves objects a, b, … to myimage.RData

save.image(file =
"myimage.RData")

Saves all objects in your workspace to
myimage.RData

load(file = "myimage.RData") Loads objects in the file myimage.RData

111
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Code Description
read.table(file =
"mydata.txt", sep, header)

Reads a text file called mydata.txt, define how
columns are separated with sep (e.g. sep = ","
for comma-delimited files, and sep = "\t" for
tab-delimited files), and whether there is a header
column with header = TRUE

9.1.1 Why object and file management is so important

Your computer is a maze of folders, files, and selfies (see Figure 9.2). Outside of R, when you want to open
a specific file, you probably open up an explorer window that allows you to visually search through the

folders on your computer. Or, maybe you select recent files, or type the name of the file in a search box to
let your computer do the searching for you. While this system usually works for non-programming tasks, it
is a no-go for R. Why? Well, the main problem is that all of these methods require you to visually scan your
folders and move your mouse to select folders and files that match what you are looking for. When you are
programming in R, you need to specify all steps in your analyses in a way that can be easily replicated by
others and your future self. This means you can’t just say: “Find this one file I emailed to myself a week
ago” or “Look for a file that looks something like experimentAversion3.txt.” Instead, need to be able to

write R code that tells R exactly where to find critical files – either on your computer or on the web.

To make this job easier, R uses working directories.

9.2 The working directory

The working directory is just a file path on your computer that sets the default location of any files you
read into R, or save out of R. In other words, a working directory is like a little flag somewhere on your
computer which is tied to a specific analysis project. If you ask R to import a dataset from a text file, or

save a dataframe as a text file, it will assume that the file is inside of your working directory.

You can only have one working directory active at any given time. The active working directory is called
your current working directory.

To see your current working directory, use getwd():
# Print my current working directory
getwd()
## [1] "/Users/nphillips/Dropbox/manuscripts/YaRrr/YaRrr_bd"

As you can see, when I run this code, it tells me that my working directory is in a folder on my Desktop
called yarrr. This means that when I try to read new files into R, or write files out of R, it will assume

that I want to put them in this folder.

If you want to change your working directory, use the setwd() function. For example, if I wanted to
change my working directory to an existing Dropbox folder called yarrr, I’d run the following code:

# Change my working directory to the following path
setwd(dir = "/Users/nphillips/Dropbox/yarrr")

9.3 Projects in RStudio

If you’re using RStudio, you have the option of creating a new R project. A project is simply a working
directory designated with a .RProj file. When you open a project (using File/Open Project in RStudio or
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Figure 9.1: Your workspace – all the objects, functions, and delicious glue you’ve defined in your current
session.

Figure 9.2: Your computer is probably so full of selfies like this that if you don’t get organized, you may try
to load this into your R session instead of your data file.
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Figure 9.3: A working directory is like a flag on your computer that tells R where to start looking for your
files related to a specific project. Each project should have its own folder with organized sub-folders.

Figure 9.4: Here is the folder structure I use for the working directory in my R project called ForensicFFT.
As you can see, it contains an .Rproj file generated by RStudio which sets this folder as the working directory.
I also created a folder called r for R code, a folder called data for.txt and .RData files) among others.

by double–clicking on the .Rproj file outside of R), the working directory will automatically be set to the
directory that the .RProj file is located in.

I recommend creating a new R Project whenever you are starting a new research project. Once you’ve
created a new R project, you should immediately create folders in the directory which will contain your R
code, data files, notes, and other material relevant to your project (you can do this outside of R on your

computer, or in the Files window of RStudio). For example, you could create a folder called R that contains
all of your R code, a folder called data that contains all your data (etc.). In Figure~9.4 you can see how

my working directory looks for a project I am working on called ForensicFFT.

9.4 The workspace

The workspace (aka your working environment) represents all of the objects and functions you have
either defined in the current session, or have loaded from a previous session. When you started RStudio for

the first time, the working environment was empty because you hadn’t created any new objects or
functions. However, as you defined new objects and functions using the assignment operator <-, these new
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objects were stored in your working environment. When you closed RStudio after defining new objects, you
likely got a message asking you “Save workspace image…?”” This is RStudio’s way of asking you if you
want to save all the objects currently defined in your workspace as an image file on your computer.

9.4.1 ls()

If you want to see all the objects defined in your current workspace, use the ls() function.
# Print all the objects in my workspace
ls()

When I run ls() I received the following result:

## [1] "study1.df" "study2.df" "lm.study1" "lm.study2" "bf.study1"

The result above says that I have these 5 objects in my workspace. If I try to refer to an object not listed
here, R will return an error. For example, if I try to print study3.df (which isn’t in my workspace), I will

receive the following error:
# Try to print study3.df
# Error because study3.df is NOT in my current workspace
study3.df

Error: object ‘study3.df’ not found

If you receive this error, it’s because the object you are referring to is not in your current workspace. 99%
of the time, this happens because you mistyped the name of an object.

9.5 .RData files

The best way to store objects from R is with .RData files. .RData files are specific to R and can store as
many objects as you’d like within a single file. Think about that. If you are conducting an analysis with 10

different dataframes and 5 hypothesis tests, you can save all of those objects in a single file called
ExperimentResults.RData.

9.5.1 save()

To save selected objects into one .RData file, use the save() function. When you run the save() function
with specific objects as arguments, (like save(a, b, c, file = "myobjects.RData") all of those objects

will be saved in a single file called myobjects.RData

For example, let’s create a few objects corresponding to a study.
# Create some objects that we'll save later
study1.df <- data.frame(id = 1:5,

sex = c("m", "m", "f", "f", "m"),
score = c(51, 20, 67, 52, 42))

score.by.sex <- aggregate(score ~ sex,
FUN = mean,
data = study1.df)

study1.htest <- t.test(score ~ sex,
data = study1.df)
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Figure 9.5: Saving multiple objects into a single .RData file.

Now that we’ve done all of this work, we want to save all three objects in an a file called study1.RData in
the data folder of my current working directory. To do this, you can run the following

# Save two objects as a new .RData file
# in the data folder of my current working directory
save(study1.df, score.by.sex, study1.htest,

file = "data/study1.RData")

Once you do this, you should see the study1.RData file in the data folder of your working directory. This
file now contains all of your objects that you can easily access later using the load() function (we’ll go over

this in a second…).

9.5.2 save.image()

If you have many objects that you want to save, then using save can be tedious as you’d have to type the
name of every object. To save all the objects in your workspace as a .RData file, use the save.image()
function. For example, to save my workspace in the data folder located in my working directory, I’d run

the following:
# Save my workspace to complete_image.RData in th,e
# data folder of my working directory
save.image(file = "data/projectimage.RData")

Now, the projectimage.RData file contains all objects in your current workspace.
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Figure 9.6: Our new study1.RData file is like a van filled with our objects.

9.5.3 load()

To load an .RData file, that is, to import all of the objects contained in the .RData file into your current
workspace, use the load() function. For example, to load the three specific objects that I saved earlier

(study1.df, score.by.sex, and study1.htest) in study1.RData, I’d run the following:
# Load objects in study1.RData into my workspace
load(file = "data/study1.RData")

To load all of the objects in the workspace that I just saved to the data folder in my working directory in
projectimage.RData, I’d run the following:

# Load objects in projectimage.RData into my workspace
load(file = "data/projectimage.RData")

I hope you realize how awesome loading .RData files is. With R, you can store all of your objects, from
dataframes to hypothesis tests, in a single .RData file. And then load them into any R session at any time

using load().

9.5.4 rm()

To remove objects from your workspace, use the rm() function. Why would you want to remove objects? At
some points in your analyses, you may find that your workspace is filled up with one or more objects that
you don’t need – either because they’re slowing down your computer, or because they’re just distracting.

To remove specific objects, enter the objects as arguments to rm(). For example, to remove a huge
dataframe called huge.df, I’d run the following;

# Remove huge.df from workspace
rm(huge.df)
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If you want to remove all of the objects in your working directory, enter the argument list = ls()
# Remove ALL objects from workspace
rm(list = ls())

Important!!! Once you remove an object, you cannot get it back without running the code that
originally generated the object! That is, you can’t simply click ‘Undo’ to get an object back. Thankfully, if
your R code is complete and well-documented, you should easily be able to either re-create a lost object

(e.g.; the results of a regression analysis), or re-load it from an external file.

9.6 .txt files

While .RData files are great for saving R objects, sometimes you’ll want to export data (usually
dataframes) as a simple .txt text file that other programs, like Excel and Shitty Piece of Shitty Shit, can

also read. To do this, use the write.table() function.

9.6.1 write.table()

Table 9.2: Arguments for the write.table() function that will
save an object x (usually a data frame) as a .txt file.

Argument Description
x The object you want to write to a text file, usually a dataframe
file The document’s file path relative to the working directory unless

specified otherwise. For example file = "mydata.txt" saves the text
file directly in the working directory, while file = "data/mydata.txt"
will save the data in an existing folder called data inside the working
directory.You can also specify a full file path outside of your working
directory (file =
"/Users/CaptainJack/Desktop/OctoberStudy/mydata.txt")

sep A string indicating how the columns are separated. For comma
separated files, use sep = ",", for tab–delimited files, use sep = "\t"

row.names A logical value (TRUE or FALSE) indicating whether or not save the
rownames in the text file. (row.names = FALSE will not include row
names)

For example, the following code will save the pirates dataframe as a tab–delimited text file called
pirates.txt in my working directory:

# Write the pirates dataframe object to a tab-delimited
# text file called pirates.txt in my working directory

write.table(x = pirates,
file = "pirates.txt", # Save the file as pirates.txt
sep = "\t") # Make the columns tab-delimited

If you want to save a file to a location outside of your working directory, just use the entire directory name.
When you enter a long path name into the file argument of write.table(), R will look for that directory
outside of your working directory. For example, to save a text file to my Desktop (which is outside of my

working directory), I would set file = "Users/nphillips/Desktop/pirates.txt".
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# Write the pirates dataframe object to a tab-delimited
# text file called pirates.txt to my desktop

write.table(x = pirates,
file = "Users/nphillips/Desktop/pirates.txt", # Save the file as pirates.txt to my desktop
sep = "\t") # Make the columns tab-delimited

9.6.2 read.table()

If you have a .txt file that you want to read into R, use the read.table() function.

Argument Description
file The document’s file path relative to the working directory unless

specified otherwise. For example file = "mydata.txt" looks for the
text file directly in the working directory, while file =
"data/mydata.txt" will look for the file in an existing folder called
data inside the working directory.If the file is outside of your working
directory, you can also specify a full file path (file =
"/Users/CaptainJack/Desktop/OctoberStudy/mydata.txt")

header A logical value indicating whether the data has a header row – that is,
whether the first row of the data represents the column names.

sep A string indicating how the columns are separated. For comma
separated files, use sep = ",", for tab–delimited files, use sep = "\t"

stringsAsFactors A logical value indicating whether or not to convert strings to factors. I
always set this to FALSE because I hate, hate, hate how R uses factors

The three critical arguments to read.table() are file, sep, header and stringsAsFactors. The file
argument is a character value telling R where to find the file. If the file is in a folder in your working

directory, just specify the path within your working directory (e.g.; file = data/newdata.txt. The sep
argument tells R how the columns are separated in the file (again, for a comma–separated file, use sep =
","}, for a tab–delimited file, use sep = "\t". The header argument is a logical value (TRUE or FALSE)

telling R whether or not the first row in the data is the name of the data columns. Finally, the
stringsAsFactors argument is a logical value indicating whether or not to convert strings to factors (I

always set this to FALSE!)

Let’s test this function out by reading in a text file titled mydata.txt. Since the text file is located a folder
called data in my working directory, I’ll use the file path file = "data/mydata.txt" and since the file is

tab–delimited, I’ll use the argument sep = "\t":
# Read a tab-delimited text file called mydata.txt
# from the data folder in my working directory into
# R and store as a new object called mydata

mydata <- read.table(file = 'data/mydata.txt', # file is in a data folder in my working directory
sep = '\t', # file is tab--delimited
header = TRUE, # the first row of the data is a header row
stringsAsFactors = FALSE) # do NOT convert strings to factors!!
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9.6.3 Reading files directly from a web URL

A really neat feature of the read.table() function is that you can use it to load text files directly from the
web (assuming you are online). To do this, just set the file path to the document’s web URL (beginning

with http://). For example, I have a text file stored at http://goo.gl/jTNf6P. You can import and save
this tab–delimited text file as a new object called fromweb as follows:

# Read a text file from the web
fromweb <- read.table(file = 'http://goo.gl/jTNf6P',

sep = '\t',
header = TRUE)

# Print the result
fromweb
## message randomdata
## 1 Congratulations! 1
## 2 you 2
## 3 just 3
## 4 downloaded 4
## 5 this 5
## 6 table 6
## 7 from 7
## 8 the 8
## 9 web! 9

I think this is pretty darn cool. This means you can save your main data files on Dropbox or a web-server,
and always have access to it from any computer by accessing it from its web URL.

Debugging

When you run read.table(), you might receive an error like this:

Error in file(file, “rt”) : cannot open the connection

In addition: Warning message:

In file(file, “rt”) : cannot open file ‘asdf’: No such file or directory

If you receive this error, it’s likely because you either spelled the file name incorrectly, or did not specify
the correct directory location in the file argument.

9.7 Excel, SPSS, and other data files

A common question I hear is “How can I import an SPSS/Excel/… file into R?”. The first answer to this
question I always give is “You shouldn’t”. Shitty Piece of Shitty Shit files can contain information like
variable descriptions that R doesn’t know what to do with, and Excel files often contain something, like

missing rows or cells with text instead of numbers, that can completely confuse R.

Rather than trying to import SPSS or Excel files directly in R, I always recommend first exporting/saving
the original SPSS or Excel files as text .txt. files – both SPSS and Excel have options to do this. Then,

once you have exported the data to a .txt file, you can read it into R using read.table().

Warning: If you try to export an Excel file to a text file, it is a good idea to clean the file as much as you
can first by, for example, deleting unnecessary columns, making sure that all numeric columns have
numeric data, making sure the column names are simple (ie., single words without spaces or special
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characters). If there is anything ‘unclean’ in the file, then R may still have problems reading it, even after
you export it to a text file.

If you absolutely have to read a non-text file into R, check out the package called foreign
(install.packages("foreign")). This package has functions for importing Stata, SAS and SPSS files

directly into R. To read Excel files, try the package xlsx (install.packages("xlsx")). But again, in my
experience it’s always better to convert such files to simple text files first, and then read them into R with

read.table().

9.8 Additional tips

1. There are many functions other than read.table() for importing data. For example, the functions
read.csv and read.delim are specific for importing comma-separated and tab-separated text files. In
practice, these functions do the same thing as read.table, but they don’t require you to specify a sep
argument. Personally, I always use read.table() because it always works and I don’t like trying to
remember unnecessary functions.

9.9 Test your R Might!

1. In RStudio, open a new R Project in a new directory by clicking File – New Project. Call the directory
MyRProject, and then select a directory on your computer for the project. This will be the project’s
working directory.

2. Outside of RStudio, navigate to the directory you selected in Question 1 and create three new folders
– Call them data,R, andnotes‘.

3. Go back to RStudio and open a new R script. Save the script as CreatingObjects.R in the R folder
you created in Question 2.

4. In the script, create new objects called a, b, and c. You can assign anything to these objects – from
vectors to dataframes. If you can’t think of any, use these:

a <- data.frame("sex" = c("m", "f", "m"),
"age" = c(19, 43, 25),
"favorite.movie" = c("Moon", "The Goonies", "Spice World"))

b <- mean(a$age)

c <- table(a$sex)

5. Send the code to the Console so the objects are stored in your current workspace. Use the ls() function
to see that the objects are indeed stored in your workspace.

6. I have a tab–delimited text file called club at the following web address: http://nathanieldphillips.
com/wp-content/uploads/2015/12/club.txt. Using read.table(), load the data as a new object called
club.df in your workspace.

7. Using write.table(), save the dataframe as a tab–delimited text file called club.txt to the data
folder you created in Question 2. Note: You won’t use the text file again for this exercise, but now you
have it handy in case you need to share it with someone who doesn’t use R.

8. Save the three objects a, b, c, and club.df to an .RData file called “myobjects.RData” in your data
folder using save().

9. Clear your workspace using the rm(list = ls()) function. Then, run the ls() function to make sure
the objects are gone.

http://nathanieldphillips.com/wp-content/uploads/2015/12/club.txt
http://nathanieldphillips.com/wp-content/uploads/2015/12/club.txt
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10. Open a new R script called AnalyzingObjects.R and save the script to the R folder you created in
Question 2.

11. Now, in your AnalyzingObjects.R script, load the objects back into your workspace from the
myobjects.RData file using the load() function. Again, run the ls() function to make sure all the
objects are back in your workspace.

12. Add some R code to your AnalyzingObjects.R script. Calculate some means and percentages.
Now save your AnalyzingObjects.R script, and then save all the objects in your workspace to
myobjects.RData.

13. Congratulations! You are now a well-organized R Pirate! Quit RStudio and go outside for some
relaxing pillaging.



Chapter 10

Advanced dataframe manipulation

In this chapter we’ll cover some more advanced functions and procedures for manipulating dataframes.
# Exam data
exam <- data.frame(
id = 1:5,
q1 = c(1, 5, 2, 3, 2),
q2 = c(8, 10, 9, 8, 7),
q3 = c(3, 7, 4, 6, 4))

# Demographic data
demographics <- data.frame(
id = 1:5,
sex = c("f", "m", "f", "f", "m"),
age = c(25, 22, 24, 19, 23))

# Combine exam and demographics
combined <- merge(x = exam,

y = demographics,
by = "id")

# Mean q1 score for each sex
aggregate(formula = q1 ~ sex,

data = combined,
FUN = mean)

## sex q1
## 1 f 2.0

Figure 10.1: Make your dataframes dance for you
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## 2 m 3.5

# Median q3 score for each sex, but only for those
# older than 20
aggregate(formula = q3 ~ sex,

data = combined,
subset = age > 20,
FUN = mean)

## sex q3
## 1 f 3.5
## 2 m 5.5

# Many summary statistics by sex using dplyr!
library(dplyr)
combined %>% group_by(sex) %>%
summarise(
q1.mean = mean(q1),
q2.mean = mean(q2),
q3.mean = mean(q3),
age.mean = mean(age),
N = n())

## # A tibble: 2 x 6
## sex q1.mean q2.mean q3.mean age.mean N
## <fctr> <dbl> <dbl> <dbl> <dbl> <int>
## 1 f 2.0 8.3 4.3 23 3
## 2 m 3.5 8.5 5.5 22 2

In Chapter 6, you learned how to calculate statistics on subsets of data using indexing. However, you may
have noticed that indexing is not very intuitive and not terribly efficient. If you want to calculate statistics

for many different subsets of data (e.g.; mean birth rate for every country), you’d have to write a new
indexing command for each subset, which could take forever. Thankfully, R has some great built-in

functions like aggregate() that allow you to easily apply functions (like mean()) to a dependent variable
(like birth rate) for each level of one or more independent variables (like a country) with just a few lines of

code.

10.1 order(): Sorting data

To sort the rows of a dataframe according to column values, use the order() function. The order()
function takes one or more vectors as arguments, and returns an integer vector indicating the order of the

vectors. You can use the output of order() to index a dataframe, and thus change its order.

Let’s re-order the pirates data by height from the shortest to the tallest:
# Sort the pirates dataframe by height
pirates <- pirates[order(pirates$height),]

# Look at the first few rows and columns of the result
pirates[1:5, 1:4]
## id sex age height
## 39 39 female 25 130
## 854 854 female 25 130
## 30 30 female 26 135
## 223 223 female 28 135
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## 351 351 female 36 137

By default, the order() function will sort values in ascending (increasing) order. If you want to order the
values in descending (decreasing) order, just add the argument decreasing = TRUE to the order()

function:
# Sort the pirates dataframe by height in decreasing order
pirates <- pirates[order(pirates$height, decreasing = TRUE),]

# Look at the first few rows and columns of the result
pirates[1:5, 1:4]
## id sex age height
## 2 2 male 31 209
## 793 793 male 25 209
## 430 430 male 26 201
## 292 292 male 29 201
## 895 895 male 27 201

To order a dataframe by several columns, just add additional arguments to order(). For example, to order
the pirates by sex and then by height, we’d do the following:

# Sort the pirates dataframe by sex and then height
pirates <- pirates[order(pirates$sex, pirates$height),]

By default, the order() function will sort values in ascending (increasing) order. If you want to order the
values in descending (decreasing) order, just add the argument decreasing = TRUE to the order()

function:
# Sort the pirates dataframe by height in decreasing order
pirates <- pirates[order(pirates$height, decreasing = TRUE),]

10.2 merge(): Combining data

Argument Description
x, y Two dataframes to be merged
by A string vector of 1 or more columns to match the data by. For

example, by = "id" will combine columns that have matching values in
a column called "id". by = c("last.name", "first.name") will
combine columns that have matching values in both "last.name" and
"first.name"

all A logical value indicating whether or not to include rows with
non-matching values of by.

One of the most common data management tasks is merging (aka combining) two data sets together. For
example, imagine you conduct a study where 5 participants are given a score from 1 to 5 on a risk

assessment task. We can represent these data in a dataframe called risk.survey:
# Results from a risk survey
risk.survey <- data.frame(
"participant" = c(1, 2, 3, 4, 5),
"risk.score" = c(3, 4, 5, 3, 1))

Now, imagine that in a second study, you have participants complete a survey about their level of happiness
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Table 10.2: Results from a survey on risk.

participant risk.score
1 3
2 4
3 5
4 3
5 1

(on a scale of 0 to 100). We can represent these data in a new dataframe called happiness.survey:
happiness.survey <- data.frame(
"participant" = c(4, 2, 5, 1, 3),
"happiness.score" = c(20, 40, 50, 90, 53))

Now, we’d like to combine these data into one data frame so that the two survey scores for each participant
are contained in one object. To do this, use merge().

When you merge two dataframes, the result is a new dataframe that contains data from both dataframes.
The key argument in merge() is by. The by argument specifies how rows should be matched during the

merge. Usually, this will be something like an name, id number, or some other unique identifier.

Let’s combine our risk and happiness survey using merge(). Because we want to match rows by the
participant.id column, we’ll specify by = "participant.id". Additionally, because we want to include

rows with potentially non-matching values, we’ll include all = TRUE
# Combine the risk and happiness surveys by matching participant.id
combined.survey <- merge(x = risk.survey,

y = happiness.survey,
by = "participant",
all = TRUE)

# Print the result
combined.survey
## participant risk.score happiness.score
## 1 1 3 90
## 2 2 4 40
## 3 3 5 53
## 4 4 3 20
## 5 5 1 50

For the rest of the chapter, we’ll cover data aggregation functions. These functions allow you to quickly
and easily calculate aggregated summary statistics over groups of data in a data frame. For example, you

can use them to answer questions such as “What was the mean crew age for each ship?”, or “What
percentage of participants completed an attention check for each study condition?” We’ll start by going

over the aggregate() function.

10.3 aggregate(): Grouped aggregation
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Argument Description
formula A formula in the form y ~ x1 + x2 + ... where y is the dependent

variable, and x1, x2… are the independent variables. For example,
salary ~ sex + age will aggregate a salary column at every unique
combination of sex and age

FUN A function that you want to apply to y at every level of the
independent variables. E.g.; mean, or max.

data The dataframe containing the variables in formula
subset A subset of data to analyze. For example, subset(sex == "f" & age

> 20) would restrict the analysis to females older than 20. You can
ignore this argument to use all data.

The first aggregation function we’ll cover is aggregate(). Aggregate allows you to easily answer questions
in the form: “What is the value of the function FUN applied to a dependent variable dv at each level of one

(or more) independent variable(s) iv?
# General structure of aggregate()
aggregate(formula = dv ~ iv, # dv is the data, iv is the group

FUN = fun, # The function you want to apply
data = df) # The dataframe object containing dv and iv

Let’s give aggregate() a whirl. No…not a whirl…we’ll give it a spin. Definitely a spin. We’ll use
aggregate() on the ChickWeight dataset to answer the question “What is the mean weight for each diet?”

If we wanted to answer this question using basic R functions, we’d have to write a separate command for
each supplement like this:

# The WRONG way to do grouped aggregation.
# We should be using aggregate() instead!
mean(ChickWeight$weight[ChickWeight$Diet == 1])
## [1] 103
mean(ChickWeight$weight[ChickWeight$Diet == 2])
## [1] 123
mean(ChickWeight$weight[ChickWeight$Diet == 3])
## [1] 143
mean(ChickWeight$weight[ChickWeight$Diet == 4])
## [1] 135

If you are ever writing code like this, there is almost always a simpler way to do it. Let’s replace this code
with a much more elegant solution using aggregate().For this question, we’ll set the value of the

dependent variable Y to weight, x1 to Diet, and FUN to mean
# Calculate the mean weight for each value of Diet
aggregate(formula = weight ~ Diet, # DV is weight, IV is Diet

FUN = mean, # Calculate the mean of each group
data = ChickWeight) # dataframe is ChickWeight

## Diet weight
## 1 1 103
## 2 2 123
## 3 3 143
## 4 4 135

As you can see, the aggregate() function has returned a dataframe with a column for the independent
variable Diet, and a column for the results of the function mean applied to each level of the independent
variable. The result of this function is the same thing we’d got from manually indexing each level of Diet

individually – but of course, this code is much simpler and more elegant!



128 CHAPTER 10. ADVANCED DATAFRAME MANIPULATION

You can also include a subset argument within an aggregate() function to apply the function to subsets
of the original data. For example, if I wanted to calculate the mean chicken weights for each diet, but only

when the chicks are less than 10 weeks old, I would do the following:
# Calculate the mean weight for each value of Diet,
# But only when chicks are less than 10 weeks old

aggregate(formula = weight ~ Diet, # DV is weight, IV is Diet
FUN = mean, # Calculate the mean of each group
subset = Time < 10, # Only when Chicks are less than 10 weeks old
data = ChickWeight) # dataframe is ChickWeight

## Diet weight
## 1 1 58
## 2 2 63
## 3 3 66
## 4 4 69

You can also include multiple independent variables in the formula argument to aggregate(). For
example, let’s use aggregate() to now get the mean weight of the chicks for all combinations of both Diet

and Time, but now only for weeks 0, 2, and 4:
# Calculate the mean weight for each value of Diet and Time,
# But only when chicks are 0, 2 or 4 weeks okd

aggregate(formula = weight ~ Diet + Time, # DV is weight, IVs are Diet and Time
FUN = mean, # Calculate the mean of each group
subset = Time %in% c(0, 2, 4), # Only when Chicks are 0, 2, and 4 weeks old
data = ChickWeight) # dataframe is ChickWeight

## Diet Time weight
## 1 1 0 41
## 2 2 0 41
## 3 3 0 41
## 4 4 0 41
## 5 1 2 47
## 6 2 2 49
## 7 3 2 50
## 8 4 2 52
## 9 1 4 56
## 10 2 4 60
## 11 3 4 62
## 12 4 4 64

10.4 dplyr

The dplyr package is a relatively new R package that allows you to do all kinds of analyses quickly and
easily. It is especially useful for creating tables of summary statistics across specific groups of data. In this
section, we’ll go over a very brief overview of how you can use dplyr to easily do grouped aggregation. Just
to be clear - you can use dplyr to do everything the aggregate() function does and much more! However,

this will be a very brief overview and I strongly recommend you look at the help menu for dplyr for
additional descriptions and examples.

To use the dplyr package, you first need to install it with install.packages() and load it:
install.packages("dplyr") # Install dplyr (only necessary once)
library("dplyr") # Load dplyr
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Programming with dplyr looks a lot different than programming in standard R. dplyr works by combining
objects (dataframes and columns in dataframes), functions (mean, median, etc.), and verbs (special

commands in dplyr). In between these commands is a new operator called the pipe which looks like this:
%>%}. The pipe simply tells R that you want to continue executing some functions or verbs on the object

you are working on. You can think about this pipe as meaning ‘and then…’

To aggregate data with dplyr, your code will look something like the following code. In this example,
assume that the dataframe you want to summarize is called my.df, the variable you want to group the data
by independent variables iv1, iv2, and the columns you want to aggregate are called col.a, col.b and

col.c
# Template for using dplyr
my.df %>% # Specify original dataframe
filter(iv3 > 30) %>% # Filter condition
group_by(iv1, iv2) %>% # Grouping variable(s)
summarise(
a = mean(col.a), # calculate mean of column col.a in my.df
b = sd(col.b), # calculate sd of column col.b in my.df
c = max(col.c)) # calculate max on column col.c in my.df, ...

When you use dplyr, you write code that sounds like: “The original dataframe is XXX, now filter the
dataframe to only include rows that satisfy the conditions YYY, now group the data at each level of the

variable(s) ZZZ, now summarize the data and calculate summary functions XXX…”

Let’s start with an example: Let’s create a dataframe of aggregated data from the pirates dataset. I’ll
filter the data to only include pirates who wear a headband. I’ll group the data according to the columns
sex and college. I’ll then create several columns of different summary statistic of some data across each

grouping. To create this aggregated data frame, I will use the new function group_by and the verb
summarise. I will assign the result to a new dataframe called pirates.agg:

pirates.agg <- pirates %>% # Start with the pirates dataframe
filter(headband == "yes") %>% # Only pirates that wear hb
group_by(sex, college) %>% # Group by these variables
summarise(

age.mean = mean(age), # Define first summary...
tat.med = median(tattoos), # you get the idea...
n = n() # How many are in each group?

) # End

# Print the result
pirates.agg
## # A tibble: 6 x 5
## # Groups: sex [?]
## sex college age.mean tat.med n
## <chr> <chr> <dbl> <dbl> <int>
## 1 female CCCC 26 10 206
## 2 female JSSFP 34 10 203
## 3 male CCCC 23 10 358
## 4 male JSSFP 32 10 85
## 5 other CCCC 25 10 24
## 6 other JSSFP 32 12 11

As you can see from the output on the right, our final object pirates.agg is the aggregated dataframe we
want which aggregates all the columns we wanted for each combination of sex and college One key new
function here is n(). This function is specific to dplyr and returns a frequency of values in a summary

command.
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Let’s do a more complex example where we combine multiple verbs into one chunk of code. We’ll aggregate
data from the movies dataframe.

movies %>% # From the movies dataframe...
filter(genre != "Horror" & time > 50) %>% # Select only these rows
group_by(rating, sequel) %>% # Group by rating and sequel
summarise( #
frequency = n(), # How many movies in each group?
budget.mean = mean(budget, na.rm = T), # Mean budget?
revenue.mean = mean(revenue.all), # Mean revenue?
billion.p = mean(revenue.all > 1000)) # Percent of movies with revenue > 1000?

## # A tibble: 14 x 6
## # Groups: rating [?]
## rating sequel frequency budget.mean revenue.mean billion.p
## <chr> <int> <int> <dbl> <dbl> <dbl>
## 1 G 0 59 41.23 234 0.0000
## 2 G 1 12 92.92 357 0.0833
## 3 NC-17 0 2 3.75 18 0.0000
## 4 Not Rated 0 84 1.74 56 0.0000
## 5 Not Rated 1 12 0.67 66 0.0000
## 6 PG 0 312 51.78 191 0.0096
## 7 PG 1 62 77.21 372 0.0161
## 8 PG-13 0 645 52.09 168 0.0062
## 9 PG-13 1 120 124.16 524 0.1167
## 10 R 0 623 31.38 109 0.0000
## 11 R 1 42 58.25 226 0.0000
## 12 <NA> 0 86 1.65 34 0.0000
## 13 <NA> 1 15 5.51 48 0.0000
## 14 <NA> NA 11 0.00 34 0.0000

As you can see, our result is a dataframe with 14 rows and 6 columns. The data are summarized from the
movie dataframe, only include values where the genre is not Horror and the movie length is longer than 50

minutes, is grouped by rating and sequel, and shows several summary statistics.

10.4.1 Additional dplyr help

We’ve only scratched the surface of what you can do with dplyr. In fact, you can perform almost all of
your R tasks, from loading, to managing, to saving data, in the dplyr framework. For more tips on using

dplyr, check out the dplyr vignette at
https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html. Or open it in RStudio by

running the following command:
# Open the dplyr introduction in R
vignette("introduction", package = "dplyr")

There is also a very nice YouTube video covering dplyr at https://goo.gl/UY2AE1. Finally, consider also
reading R for Data Science written by Garrett Grolemund and Hadley Wickham, which teaches R from the

ground-up using the dplyr framework.

10.5 Additional aggregation functions

There are many, many other aggregation functions that I haven’t covered in this chapter – mainly because
I rarely use them. In fact, that’s a good reminder of a peculiarity about R, there are many methods to

https://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html
https://goo.gl/UY2AE1
http://r4ds.had.co.nz/


10.5. ADDITIONAL AGGREGATION FUNCTIONS 131

Table 10.4: Scores from an exam.

q1 q2 q3 q4 q5
1 1 1 1 1
0 0 0 1 0
0 1 1 1 0
0 1 0 1 1
0 0 0 1 1

achieve the same result, and your choice of which method to use will often come down to which method
you just like the most.

10.5.1 rowMeans(), colMeans()

To easily calculate means (or sums) across all rows or columns in a matrix or dataframe, use rowMeans(),
colMeans(), rowSums() or colSums().

For example, imagine we have the following data frame representing scores from a quiz with 5 questions,
where each row represents a student, and each column represents a question. Each value can be either 1

(correct) or 0 (incorrect)
# Some exam scores
exam <- data.frame("q1" = c(1, 0, 0, 0, 0),

"q2" = c(1, 0, 1, 1, 0),
"q3" = c(1, 0, 1, 0, 0),
"q4" = c(1, 1, 1, 1, 1),
"q5" = c(1, 0, 0, 1, 1))

Let’s use rowMeans() to get the average scores for each student:
# What percent did each student get correct?
rowMeans(exam)
## [1] 1.0 0.2 0.6 0.6 0.4

Now let’s use colMeans() to get the average scores for each question:
# What percent of students got each question correct?
colMeans(exam)
## q1 q2 q3 q4 q5
## 0.2 0.6 0.4 1.0 0.6

Warning rowMeans() and colMeans() only work on numeric columns. If you try to apply them to
non-numeric data, you’ll receive an error.

10.5.2 apply family

There is an entire class of apply functions in R that apply functions to groups of data. For example,
tapply(), sapply() and lapply() each work very similarly to aggregate(). For example, you can

calculate the average length of movies by genre with tapply() as follows.
with(movies, tapply(X = time, # DV is time

INDEX = genre, # IV is genre
FUN = mean, # function is mean
na.rm = TRUE)) # Ignore missing
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## Action Adventure Black Comedy
## 113 106 113
## Comedy Concert/Performance Documentary
## 99 78 69
## Drama Horror Multiple Genres
## 116 99 114
## Musical Reality Romantic Comedy
## 113 44 107
## Thriller/Suspense Western
## 112 121

tapply(), sapply(), and lapply() all work very similarly, their main difference is in the structure of their
output. For example, lapply() returns a list (we’ll cover lists in a future chapter).

10.6 Test your R might!: Mmmmm…caffeine

You’re in charge of analyzing the results of an experiment testing the effects of different forms of caffeine
on a measure of performance. In the experiment, 100 participants were given either Green tea or coffee, in
doses of either 1 or 5 servings. They then performed a cognitive test where higher scores indicate better

performance.

The data are stored in a tab–delimited dataframe at the following link:
https://raw.githubusercontent.com/ndphillips/ThePiratesGuideToR/master/data/caffeinestudy.txt

1. Load the dataset from https://raw.githubusercontent.com/ndphillips/ThePiratesGuideToR/master/
data/caffeinestudy.txt as a new dataframe called caffeine.

2. Calculate the mean age for each gender

3. Calculate the mean age for each drink

4. Calculate the mean age for each combined level of both gender and drink

5. Calculate the median score for each age

https://raw.githubusercontent.com/ndphillips/ThePiratesGuideToR/master/data/caffeinestudy.txt
https://raw.githubusercontent.com/ndphillips/ThePiratesGuideToR/master/data/caffeinestudy.txt
https://raw.githubusercontent.com/ndphillips/ThePiratesGuideToR/master/data/caffeinestudy.txt
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6. For men only, calculate the maximum score for each age

7. Create a dataframe showing, for each level of drink, the mean, median, maximum, and standard
deviation of scores.

8. Only for females above the age of 20, create a table showing, for each combined level of drink and cups,
the mean, median, maximum, and standard deviation of scores. Also include a column showing how
many people were in each group.
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Chapter 11

Plotting (I)

Sammy Davis Jr. was one of the greatest American performers of all time. If you don’t know him already,
Sammy was an American entertainer who lived from 1925 to 1990. The range of his talents was just

incredible. He could sing, dance, act, and play multiple instruments with ease. So how is R like Sammy
Davis Jr? Like Sammy Davis Jr., R is incredibly good at doing many different things. R does data analysis
like Sammy dances, and creates plot like Sammy sings. If Sammy and R did just one of these things, they’d

be great. The fact that they can do both is pretty amazing.

When you evaluate plotting functions in R, R can build the plot in different locations. The default location
for plots is in a temporary plotting window within your R programming environment. In RStudio, plots
will show up in the Plot window (typically on the bottom right hand window pane). In Base R, plots will

show up in a Quartz window.

You can think of these plotting locations as canvases. You only have one canvas active at any given time,
and any plotting command you run will put more plotting elements on your active canvas. Certain

high–level plotting functions like plot() and hist() create brand new canvases, while other low–level
plotting functions like points() and segments() place elements on top of existing canvases.

Don’t worry if that’s confusing for now – we’ll go over all the details soon.

Let’s start by looking at a basic scatterplot in R using the plot() function. When you execute the
following code, you should see a plot open in a new window:

# A basic scatterplot
plot(x = 1:10,

y = 1:10,
xlab = "X Axis label",
ylab = "Y Axis label",
main = "Main Title")

135
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Figure 11.1: The great Sammy Davis Jr. Do yourself a favor and spend an evening watching videos of him
performing on YouTube. Image used entirely without permission.
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Let’s take a look at the result. We see an x–axis, a y–axis, 10 data points, an x–axis label, a y–axis label,
and a main plot title. Some of these items, like the labels and data points, were entered as arguments to
the function. For example, the main arguments x and y are vectors indicating the x and y coordinates of
the (in this case, 10) data points. The arguments xlab, ylab, and main set the labels to the plot. However,
there were many elements that I did not specify – from the x and y axis limits, to the color of the plotting
points. As you’ll discover later, you can change all of these elements (and many, many more) by specifying
additional arguments to the plot() function. However, because I did not specify them, R used default

values – values that R uses unless you tell it to use something else.

For the rest of this chapter, we’ll go over the main plotting functions, along with the most common
arguments you can use to customize the look of your plot.

11.1 Colors

Most plotting functions have a color argument (usually col) that allows you to specify the color of
whatever your plotting. There are many ways to specify colors in R, let’s start with the easiest ways.

11.1.1 Colors by name

The easiest way to specify a color is to enter its name as a string. For example col = "red" is R’s default
version of the color red. Of course, all the basic colors are there, but R also has tons of quirky colors like

"snow", "papayawhip" and "lawngreen". Figure 11.2 shows 100 randomly selected named colors.

To see all 657 color names in R, run the code colors(). Or to see an interactive demo of colors, run
demo("colors").
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gray50 gray17 honeydew burlywood grey45 grey55 papayawhip gray88 grey94 darkslategray3

lightcyan salmon2 gray28 green3 navyblue lightskyblue dodgerblue4 gray76 gray77 lightsteelblue3

grey81 magenta3 turquoise2 mediumturquoise grey5 darkslategray1 navajowhite2 red4 grey85 gray22

grey46 seashell3 gray65 slateblue2 lightskyblue4 red2 darkslategrey lavenderblush3 springgreen3 darkgreen

gray52 peachpuff3 mistyrose orchid hotpink3 grey40 midnightblue pink4 dimgrey gray34

gray48 deepskyblue gold1 gray14 grey96 gray0 darkgoldenrod floralwhite grey97 snow4

grey16 khaki4 salmon4 lightblue3 grey3 gray59 grey9 grey2 gold3 lightcyan4

gray89 gray40 grey74 royalblue3 tan4 honeydew2 orange magenta mistyrose4 chocolate1

tomato3 thistle4 whitesmoke sienna bisque3 grey70 lightpink gold gray19 lightgreen

palegreen1 deeppink3 yellowgreen gray100 orchid3 gray66 grey30 cyan3 azure4 lightskyblue1

Figure 11.2: 100 random named colors (out of all 657) in R.
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Figure 11.3: Examples of gray(level, alpha)

11.1.2 gray()

Table 11.1: gray() function arguments

Argument Description
level Lightness: level = 1 = totally white, level = 0 = totally black
alpha Transparency: alpha = 0 = totally transparent, alpha = 1 = not

transparent at all.

If you’re into erotic romance and BDSM, then you might be interested in Shades of Gray. If so, the
function gray(x) is your answer. The gray() function takes two arguments, level and alpha, and returns
a shade of gray. For example, gray(level = 1) will return white. The second alpha argument specifies

how transparent to make the color on a scale from 0 (completely transparent), to 1 (not transparent at all).
The default value for alpha is 1 (not transparent at all). See Figure 11.3 for examples.

https://en.wikipedia.org/wiki/Fifty_Shades_of_Grey
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11.1.3 yarrr::transparent()

I don’t know about you, but I almost always find transparent colors to be more appealing than solid colors.
Not only do they help you see when multiple points are overlapping, but they’re just much nicer to look at.

Just look at the overlapping circles in the plot below.

Standard Transparent

Unfortunately, as far as I know, base-R does not make it easy to make transparent colors. Thankfully,
there is a function in the yarrr package called transparent that makes it very easy to make any color
transparent. To use it, just enter the original color as the main argument orig.col, then enter how

transparent you want to make it (from 0 to 1) as the second argument trans.val.

Here is a basic scatterplot with standard (non-transparent) colors:
# Plot with Standard Colors
plot(x = pirates$height,

y = pirates$weight,
col = "blue",
pch = 16,
main = "col ='blue'")
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Now here’s the same plot using the transparent() function in the yarrr package:
# Plot with transparent colors using the transparent() function in the yarrr package
plot(x = pirates$height,

y = pirates$weight,
col = yarrr::transparent("blue", trans.val = .9),
pch = 16,
main = "col = yarrr::transparent('blue', .9)")
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Later on in the book, we’ll cover more advanced ways to come up with colors using color palettes (using
the RColorBrewer package or the piratepal() function in the yarrr package) and functions that generate

shades of colors based on numeric data (like the colorRamp2() function in the circlize package).

11.2 Plotting arguments

Most plotting functions have tons of optional arguments (also called parameters) that you can use to
customize virtually everything in a plot. To see all of them, look at the help menu for par by executing
?par. However, the good news is that you don’t need to specify all possible parameters you create a plot.
Instead, there are only a few critical arguments that you must specify - usually one or two vectors of data.
For any optional arguments that you do not specify, R will use either a default value, or choose a value

that makes sense based on the data you specify.

In the following examples, I will to cover the main plotting parameters for each plotting type. However, the
best way to learn what you can, and can’t, do with plots, is to try to create them yourself!

I think the best way to learn how to create plots is to see some examples. Let’s start with the main
high-level plotting functions.

11.3 Scatterplot: plot()

The most common high-level plotting function is plot(x, y). The plot() function makes a scatterplot
from two vectors x and y, where the x vector indicates the x (horizontal) values of the points, and the y

vector indicates the y (vertical) values.
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Table 11.2: plot() function arguments

Argument Description
x, y Vectors of equal length specifying the x and y values of the points
type Type of plot. "l" means lines, "p" means points, "b" means lines and

points, "n" means no plotting
main, xlab, ylab Strings giving labels for the plot title, and x and y axes
xlim, ylim Limits to the axes. For example, xlim = c(0, 100) will set the

minimum and maximum of the x-axis to 0 and 100.
pch An integer indicating the type of plotting symbols (see ?points and

section below), or a string specifying symbols as text. For example, pch
= 21 will create a two-color circle, while pch = "P" will plot the
character "P". To see all the different symbol types, run ?points.

col Main color of the plotting symbols. For example col = "red" will
create red symbols.

cex A numeric vector specifying the size of the symbols (from 0 to Inf).
The default size is 1. cex = 4 will make the points very large, while
cex = .5 will make them very small.

plot(x = 1:10, # x-coordinates
y = 1:10, # y-coordinates
type = "p", # Just draw points (no lines)
main = "My First Plot",
xlab = "This is the x-axis label",
ylab = "This is the y-axis label",
xlim = c(0, 11), # Min and max values for x-axis
ylim = c(0, 11), # Min and max values for y-axis
col = "blue", # Color of the points
pch = 16, # Type of symbol (16 means Filled circle)
cex = 1) # Size of the symbols
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Aside from the x and y arguments, all of the arguments are optional. If you don’t specify a specific
argument, then R will use a default value, or try to come up with a value that makes sense. For example, if
you don’t specify the xlim and ylim arguments, R will set the limits so that all the points fit inside the plot.

11.3.1 Symbol types: pch

When you create a plot with plot() (or points with points()), you can specify the type of symbol with
the pch argument. You can specify the symbol type in one of two ways: with an integer, or with a string.
If you use a string (like "p"), R will use that text as the plotting symbol. If you use an integer value, you’ll
get the symbol that correspond to that number. See Figure for all the symbol types you can specify with

an integer.

Symbols differ in their shape and how they are colored. Symbols 1 through 14 only have borders and are
always empty, while symbols 15 through 20 don’t have a border and are always filled. Symbols 21 through
25 have both a border and a filling. To specify the border color or background for symbols 1 through 20,
use the col argument. For symbols 21 through 25, you set the color of the border with col, and the color

of the background using bg

Let’s look at some different symbol types in action when applied to the same data:
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Figure 11.4: The symbol types associated with the pch plotting parameter.

pch = 2,
col = 'blue'

pch = 16,
col = 'orchid2'

pch = 21,
col = 'black',

bg = 'orangered2

pch = 25,
col = 'pink3',
bg = 'plum3

11.4 Histogram: hist()

Table 11.3: hist() function arguments

Argument Description
x Vector of values
breaks How should the bin sizes be calculated? Can be specified in many ways

(see ?hist for details)
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Argument Description
freq Should frequencies or probabilities be plotted? freq = TRUE shows

frequencies, freq = FALSE shows probabilities.
col, border Colors of the bin filling (col) and border (border)

Histograms are the most common way to plot a vector of numeric data. To create a histogram we’ll use the
hist() function. The main argument to hist() is a x, a vector of numeric data. If you want to specify
how the histogram bins are created, you can use the breaks argument. To change the color of the border

or background of the bins, use col and border:

Let’s create a histogram of the weights in the ChickWeight dataset:
hist(x = ChickWeight$weight,

main = "Chicken Weights",
xlab = "Weight",
xlim = c(0, 500))
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We can get more fancy by adding additional arguments like breaks = 20 to force there to be 20 bins, and
col = "papayawhip" and bg = "hotpink" to make it a bit more colorful:

hist(x = ChickWeight$weight,
main = "Fancy Chicken Weight Histogram",
xlab = "Weight",
ylab = "Frequency",
breaks = 20, # 20 Bins
xlim = c(0, 500),
col = "papayawhip", # Filling Color
border = "hotpink") # Border Color
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If you want to plot two histograms on the same plot, for example, to show the distributions of two different
groups, you can use the add = TRUE argument to the second plot.

hist(x = ChickWeight$weight[ChickWeight$Diet == 1],
main = "Two Histograms in one",
xlab = "Weight",
ylab = "Frequency",
breaks = 20,
xlim = c(0, 500),
col = gray(0, .5))

hist(x = ChickWeight$weight[ChickWeight$Diet == 2],
breaks = 30,
add = TRUE, # Add plot to previous one!
col = gray(1, .8))
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11.5 Barplot: barplot()

A barplot typically shows summary statistics for different groups. The primary argument to a barplot is
height: a vector of numeric values which will generate the height of each bar. To add names below the

bars, use the names.arg argument. For additional arguments specific to barplot(), look at the help menu
with ?barplot:

barplot(height = 1:5, # A vector of heights
names.arg = c("G1", "G2", "G3", "G4", "G5"), # A vector of names
main = "Example Barplot",
xlab = "Group",
ylab = "Height")
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Of course, you should plot more interesting data than just a vector of integers with a barplot. In the plot
below, I create a barplot with the average weight of chickens for each week:

# Calculate mean weights for each time period
diet.weights <- aggregate(weight ~ Time,

data = ChickWeight,
FUN = mean)

# Create barplot
barplot(height = diet.weights$weight,

names.arg = diet.weights$Time,
xlab = "Week",
ylab = "Average Weight",
main = "Average Chicken Weights by Time",
col = "mistyrose")



150 CHAPTER 11. PLOTTING (I)

0 2 4 6 8 10 12 14 16 18 20 21

Average Chicken Weights by Time

Week

A
ve

ra
ge

 W
ei

gh
t

0
50

10
0

15
0

20
0

11.5.1 Clustered barplot

If you want to create a clustered barplot, with different bars for different groups of data, you can enter a
matrix as the argument to height. R will then plot each column of the matrix as a separate set of bars.
For example, let’s say I conducted an experiment where I compared how fast pirates can swim under four
conditions: Wearing clothes versus being naked, and while being chased by a shark versus not being chased
by a shark. Let’s say I conducted this experiment and calculated the following average swimming speed:

Naked Clothed
No Shark 2.1 1.5
Shark 3.0 3.0

I can represent these data in a matrix as follows. In order for the final barplot to include the condition
names, I’ll add row and column names to the matrix with colnames() and rownames()

swim.data <- cbind(c(2.1, 3), # Naked Times
c(1.5, 3)) # Clothed Times

colnames(swim.data) <- c("Naked", "Clothed")
rownames(swim.data) <- c("No Shark", "Shark")

# Print result
swim.data
## Naked Clothed
## No Shark 2.1 1.5
## Shark 3.0 3.0

Now, when I enter this matrix as the height = swim.data argument to barplot(), I’ll get multiple bars.
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barplot(height = swim.data,
beside = TRUE, # Put the bars next to each other
legend.text = TRUE, # Add a legend
col = c(transparent("green", .2),

transparent("red", .2)),
main = "Swimming Speed Experiment",
ylab = "Speed (in meters / second)",
xlab = "Clothing Condition",
ylim = c(0, 4))
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11.6 pirateplot()

Table 11.4: pirateplot() function arguments

Argument Description
formula A formula specifying a y-axis variable as a function of 1, 2 or 3 x-axis

variables. For example, formula = weight ~ Diet + Time will plot
weight as a function of Diet and Time

data A dataframe containing the variables specified in formula
theme A plotting theme, can be an integer from 1 to 4. Setting theme = 0 will

turn off all plotting elements so you can then turn them on individually.
pal The color palette. Can either be a named color palette from the

piratepal() function (e.g. "basel", "xmen", "google") or a standard
R color. For example, make a black and white plot, set pal = "black"

cap.beans If cap.beans = TRUE, beans will be cut off at the maximum and
minimum data values
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4 Elements of a pirateplot
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Figure 11.5: The pirateplot(), an R pirate’s favorite plot!

A pirateplot a plot contained in the yarrr package written specifically by, and for R pirates The pirateplot
is an easy-to-use function that, unlike barplots and boxplots, can easily show raw data, descriptive

statistics, and inferential statistics in one plot. Figure 11.5 shows the four key elements in a pirateplot:

Table 11.5: 4 elements of a pirateplot()

Element Description
Points Raw data.
Bar / Line Descriptive statistic, usually the mean or median
Bean Smoothed density curve showing the full data distribution.
Band Inference around the mean, either a Bayesian Highest Density Interval

(HDI), or a Confidence Interval (CI)

The two main arguments to pirateplot() are formula and data. In formula, you specify plotting
variables in the form y ~ x, where y is the name of the dependent variable, and x is the name of the

independent variable. In data, you specify the name of the dataframe object where the variables are stored.

Let’s create a pirateplot of the ChickWeight data. I’ll set the dependent variable to weight, and the
independent variable to Time using the argument formula = weight ~ Time:

yarrr::pirateplot(formula = weight ~ Time, # dv is weight, iv is Diet
data = ChickWeight,
main = "Pirateplot of chicken weights",
xlab = "Diet",
ylab = "Weight")

Pirateplot of chicken weights

Diet

W
ei

gh
t

0

100

200

300

400

0 2 4 6 8 10 12 14 16 18 20 21



11.6. PIRATEPLOT() 153

11.6.1 Pirateplot themes

There are many different pirateplot themes, these themes dictate the overall look of the plot. To specify a
theme, just use the theme = x argument, where x is the theme number:

theme = 1
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theme = 3
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For example, here is a pirateplot height data from the pirates dataframe using theme = 3. Here, I’ll plot
pirates’ heights as a function of their sex and whether or not they wear a headband. I’ll also make the plot

all grayscale by using the pal = "gray" argument:
yarrr::pirateplot(formula = height ~ sex + headband, # DV = height, IV1 = sex, IV2 = headband

data = pirates,
theme = 3,
main = "Pirate Heights",
pal = "gray")
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Table 11.6: Customising plotting elements

element color opacity
points point.col, point.bg point.o
beans bean.f.col, bean.b.col bean.f.o, bean.b.o
bar bar.f.col, bar.b.col bar.f.o, bar.b.o
inf inf.f.col, inf.b.col inf.f.o, inf.b.o
avg.line avg.line.col avg.line.o
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11.6.2 Customizing pirateplots

Regardless of the theme you use, you can always customize the color and opacity of graphical elements. To
do this, specify one of the following arguments. Note: Arguments with .f. correspond to the filling of an

element, while .b. correspond to the border of an element:

For example, I could create the following pirateplots using theme = 0 and specifying elements explicitly:
pirateplot(formula = weight ~ Time,

data = ChickWeight,
theme = 0,
main = "Fully customized pirateplot",
pal = "southpark", # southpark color palette
bean.f.o = .6, # Bean fill
point.o = .3, # Points
inf.f.o = .7, # Inference fill
inf.b.o = .8, # Inference border
avg.line.o = 1, # Average line
bar.f.o = .5, # Bar
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inf.f.col = "white", # Inf fill col
inf.b.col = "black", # Inf border col
avg.line.col = "black", # avg line col
bar.f.col = gray(.8), # bar filling color
point.pch = 21,
point.bg = "white",
point.col = "black",
point.cex = .7)
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If you don’t want to start from scratch, you can also start with a theme, and then make selective
adjustments:

pirateplot(formula = weight ~ Time,
data = ChickWeight,
main = "Adjusting an existing theme",
theme = 2, # Start with theme 2
inf.f.o = 0, # Turn off inf fill
inf.b.o = 0, # Turn off inf border
point.o = .2, # Turn up points
bar.f.o = .5, # Turn up bars
bean.f.o = .4, # Light bean filling
bean.b.o = .2, # Light bean border
avg.line.o = 0, # Turn off average line
point.col = "black") # Black points
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Just to drive the point home, as a barplot is a special case of a pirateplot, you can even reduce a pirateplot
into a horrible barplot:

# Reducing a pirateplot to a (at least colorful) barplot
pirateplot(formula = weight ~ Diet,

data = ChickWeight,
main = "Reducing a pirateplot to a (horrible) barplot",
theme = 0, # Start from scratch
pal = "black",
inf.disp = "line", # Use a line for inference
inf.f.o = 1, # Turn up inference opacity
inf.f.col = "black", # Set inference line color
bar.f.o = .3)
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There are many additional arguments to pirateplot() that you can use to complete customize the look of
your plot. To see them all, look at the help menu with ?pirateplot or look at the vignette at

Table 11.7: Additional pirateplot() customizations.

Element Argument Examples
Background color back.col back.col = 'gray(.9, .9)'
Gridlines gl.col, gl.lwd, gl.lty gl.col = 'gray', gl.lwd = c(.75, 0), gl.lty

= 1
Quantiles quant, quant.lwd,

quant.col
quant = c(.1, .9), quant.lwd = 1, quant.col
= 'black'

Average line avg.line.fun avg.line.fun = median
Inference
Calculation

inf.method inf.method = 'hdi', inf.method = 'ci'

Inference Display inf.disp inf.disp = 'line', inf.disp = 'bean',
inf.disp = 'rect'

# Additional pirateplot customizations
pirateplot(formula = weight ~ Diet,

data = ChickWeight,
main = "Adding quantile lines and background colors",
theme = 2,
cap.beans = TRUE,
back.col = transparent("blue", .95), # Add light blue background
gl.col = "gray", # Gray gridlines
gl.lwd = c(.75, 0),
inf.f.o = .6, # Turn up inf filling
inf.disp = "bean", # Wrap inference around bean
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bean.b.o = .4, # Turn down bean borders
quant = c(.1, .9), # 10th and 90th quantiles
quant.col = "black") # Black quantile lines

Adding quantile lines and background colors
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11.6.3 Saving output

If you include the plot = FALSE argument to a pirateplot, the function will return some values associated
with each bean in the plot. In the next chunk, I’ll

# Create a pirateplot
pirateplot(formula = tattoos ~ sex + headband,

data = pirates)
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# Save data from the pirateplot to an object
tattoos.pp <- pirateplot(formula = tattoos ~ sex + headband,

data = pirates,
plot = FALSE)

Now I can access the summary and inferential statistics from the plot in the tattoos.pp object. The most
interesting element is $summary which shows summary statistics for each bean (aka, group):

# Show me statistics from groups in the pirateplot
tattoos.pp
## $summary
## sex headband bean.num n avg inf.lb inf.ub
## 1 female no 1 55 5.0 4.3 5.5
## 2 male no 2 47 4.3 3.2 5.0
## 3 other no 3 11 5.3 2.5 7.2
## 4 female yes 4 409 10.0 9.8 10.3
## 5 male yes 5 443 10.0 9.7 10.3
## 6 other yes 6 35 10.6 9.9 11.4
##
## $avg.line.fun
## [1] "mean"
##
## $inf.method
## [1] "hdi"
##
## $inf.p
## [1] 0.95

Once you’ve created a plot with a high-level plotting function, you can add additional elements with
low-level functions. For example, you can add data points with points(), reference lines with abline(),

text with text(), and legends with legend().
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Figure 11.6: Sometimes it’s nice to start with a blank plotting canvas, and then add each element individually
with low-level plotting commands

11.7 Low-level plotting functions

Low-level plotting functions allow you to add elements, like points, or lines, to an existing plot. Here are
the most common low-level plotting functions:

Table 11.8: Common low-level plotting functions.

Function Outcome
points(x, y) Adds points
abline(), segments() Adds lines or segments
arrows() Adds arrows
curve() Adds a curve representing a function
rect(),polygon() Adds a rectangle or arbitrary shape
text(), mtext() Adds text within the plot, or to plot margins
legend() Adds a legend
axis() Adds an axis

11.7.1 Starting with a blank plot

Before you start adding elements with low-level plotting functions, it’s useful to start with a blank plotting
space like the one I have in Figure 11.7. To do this, execute the plot() function, but use the type = "n"
argument to tell R that you don’t want to plot anything yet. Once you’ve created a blank plot, you can

additional elements with low-level plotting commands.
# Create a blank plotting space
plot(x = 1,

xlab = "X Label",
ylab = "Y Label",
xlim = c(0, 100),
ylim = c(0, 100),
main = "Blank Plotting Canvas",
type = "n")



164 CHAPTER 11. PLOTTING (I)

0 20 40 60 80 100

0
20

40
60

80
10

0

Blank Plotting Canvas

X Label

Y
 L

ab
el

Figure 11.7: A blank plotting space, ready for additional elements!

11.7.2 points()

To add new points to an existing plot, use the points() function. The points function has many similar
arguments to the plot() function, like x (for the x-coordinates), y (for the y-coordinates), and parameters
like col (border color), cex (point size), and pch (symbol type). To see all of them, look at the help menu

with ?points().

Let’s use points() to create a plot with different symbol types for different data. I’ll use the pirates
dataset and plot the relationship between a pirate’s age and the number of tattoos he/she has. I’ll create

separate points for male and female pirates:
# Create a blank plot
plot(x = 1,

type = "n",
xlim = c(100, 225),
ylim = c(30, 110),
pch = 16,
xlab = "Height",
ylab = "Weight",
main = "Adding points to a plot with points()")

# Add coral2 points for male data
points(x = pirates$height[pirates$sex == "male"],

y = pirates$weight[pirates$sex == "male"],
pch = 16,
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Figure 11.8: Using points() to add points with different colors

col = transparent("coral2", trans.val = .8))

# Add steelblue points for female data
points(x = pirates$height[pirates$sex == "female"],

y = pirates$weight[pirates$sex == "female"],
pch = 16,
col = transparent("steelblue3", trans.val = .8))

11.7.3 abline(), segments(), grid()

Table 11.9: Arguments to abline() and segments()

Argument Outcome
h, v Locations of horizontal and vertical lines (for

abline() only)
x0, y0, x1,
y1

Starting and ending coordinates of lines (for
segments() only)

lty Line type. 1 = solid, 2 = dashed, 3 = dotted, …
lwd Width of the lines specified by a number. 1 is the

default (.2 is very thin, 5 is very thick)
col Line color

To add straight lines to a plot, use abline() or segments(). abline() will add a line across the entire
plot, while segments() will add a line with defined starting and end points.

For example, we can add reference lines to a plot with abline(). In the following plot, I’ll add vertical and
horizontal reference lines showing the means of the variables on the x and y axes, for the horizontal line,
I’ll specify h = mean(pirates$height), for the vertical line, I’ll specify v = mean(pirates$weight)

plot(x = pirates$weight,
y = pirates$height,
xlab = "weight",
ylab = "height",
main = "Adding reference lines with abline",
pch = 16,
col = gray(.5, .2))

# Add horizontal line at mean height
abline(h = mean(pirates$height),

lty = 2) # Dashed line

# Add vertical line at mean weight
abline(v = mean(pirates$weight),

lty = 2) # Dashed line
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To change the look of your lines, use the lty argument, which changes the type of line (see Figure 11.9),
lwd, which changes its thickness, and col which changes its color

You can also add a regression line (also called a line of best fit) to a scatterplot by entering a regression
object created with lm() as the main argument to abline():
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# Add a regression line to a scatterplot
plot(x = pirates$height,

y = pirates$weight,
pch = 16,
col = transparent("purple", .7),
main = "Adding a regression line to a scatterplot()")

# Add the regression line
abline(lm(weight ~ height, data = pirates),

lty = 2)
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The segments() function works very similarly to abline() – however, with the segments() function, you
specify the beginning and end points of the segments with the arguments x0, y0, x1, and y1. In Figure

11.10 I use segments() to connect two vectors of data:
# Before and after data
before <- c(2.1, 3.5, 1.8, 4.2, 2.4, 3.9, 2.1, 4.4)
after <- c(7.5, 5.1, 6.9, 3.6, 7.5, 5.2, 6.1, 7.3)

# Create plotting space and before scores
plot(x = rep(1, length(before)),

y = before,
xlim = c(.5, 2.5),
ylim = c(0, 11),
ylab = "Score",
xlab = "Time",
main = "Using segments() to connect points",
xaxt = "n")

# Add after scores
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Figure 11.10: Connecting points with segments().

points(x = rep(2, length(after)), y = after)

# Add connections with segments()
segments(x0 = rep(1, length(before)),

y0 = before,
x1 = rep(2, length(after)),
y1 = after,
col = gray(0, .5))

# Add labels
mtext(text = c("Before", "After"),

side = 1, at = c(1, 2), line = 1)

The grid() function allows you to easily add grid lines to a plot (you can customize your grid lines further
with lty, lwd, and col arguments):

# Add gridlines to a plot with grid()
plot(pirates$age,

pirates$beard.length,
pch = 16,
col = gray(.1, .2), main = "Add grid lines to a plot with grid()")

# Add gridlines
grid()
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11.7.4 text()

Table 11.10: Arguments to text()

Argument Outcome
x, y Coordinates of the labels
labels Labels to be plotted
cex Size of the labels
adj Horizontal text adjustment. adj = 0 is left justified, adj = .5 is centered,

and adj = 1 is right-justified
pos Position of the labels relative to the coordinates. pos = 1, puts the label

below the coordinates, while 2, 3, and 4 put it to the left, top and right of
the coordinates respectively

With text(), you can add text to a plot. You can use text() to highlight specific points of interest in the
plot, or to add information (like a third variable) for every point in a plot. For example, the following code
adds the three words “Put”, “Text”, and “Here” at the coordinates (1, 9), (5, 5), and (9, 1) respectively.

See Figure 11.11 for the plot:
plot(1,

xlim = c(0, 10),
ylim = c(0, 10),
type = "n")

text(x = c(1, 5, 9),
y = c(9, 5, 1),
labels = c("Put", "text", "here"))
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Figure 11.11: Adding text to a plot with text()

You can do some cool things with text(), in Figure 11.12 I create a scatterplot of data, and add data
labels above each point by including the pos = 3 argument:

# Create data vectors
height <- c(156, 175, 160, 172, 159, 165, 178)
weight <- c(65, 74, 69, 72, 66, 75, 75)
id <- c("andrew", "heidi", "becki", "madisen", "david", "vincent", "jack")

# Plot data
plot(x = height,

y = weight,
xlim = c(155, 180),
ylim = c(65, 80),
pch = 16,
col = yarrr::piratepal("xmen"))

# Add id labels
text(x = height,

y = weight,
labels = id,
pos = 3) # Put labels above the points

When entering text in the labels argument, keep in mind that R will, by default, plot the entire text in
one line. However, if you are adding a long text string (like a sentence), you may want to separate the text
into separate lines. To do this, add the text \n where you want new lines to start. Look at Figure 11.13 for

an example.
plot(1,

type = "n",
main = "The \\n tag",
xlab = "", ylab = "")



11.7. LOW-LEVEL PLOTTING FUNCTIONS 171

155 160 165 170 175 180

65
70

75
80

height

w
ei

gh
t

andrew

heidi

becki

madisen

david

vincent jack

Figure 11.12: Adding labels to points with text()

# Text withoutbreaks
text(x = 1, y = 1.3, labels = "Text without \\n", font = 2)
text(x = 1, y = 1.2,

labels = "Haikus are easy. But sometimes they don't make sense. Refrigerator",
font = 3) # italic font

abline(h = 1, lty = 2)
# Text with breaks
text(x = 1, y = .92, labels = "Text with \\n", font = 2)
text(x = 1, y = .7,

labels = "Haikus are easy\nBut sometimes they don't make sense\nRefrigerator",
font = 3) # italic font

11.7.5 Combining text and numbers with paste()

A common way to use text in a plot, either in the main title of a plot or using the text()function, is to
combine text with numerical data. For example, you may want to include the text “Mean = 3.14” in a plot
to show that the mean of the data is 3.14. But how can we combine numerical data with text? In R, we

can do this with the paste() function:

The paste function will be helpful to you anytime you want to combine either multiple strings, or text and
strings together. For example, let’s say you want to write text in a plot that says The mean of these

data are XXX, where XXX is replaced by the group mean. To do this, just include the main text and the
object referring to the numerical mean as arguments to paste(). In Figure X I plot the chicken weights

over time, and add text to the plot specifying the overall mean of weights.
# Create the plot
plot(x = ChickWeight$Time,



172 CHAPTER 11. PLOTTING (I)

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

The \n tag

Text without \n

Haikus are easy. But sometimes they don't make sense. Refrigerator

Text with \n

Haikus are easy
But sometimes they don't make sense

Refrigerator

Figure 11.13: Break up lines in text with .

y = ChickWeight$weight,
col = gray(.3, .5),
pch = 16,
main = "Combining text with numeric scalers using paste()")

# Add reference line
abline(h = mean(ChickWeight$weight),

lty = 2)

# Add text
text(x = 3,

y = mean(ChickWeight$weight),
labels = paste("Mean weight =",

round(mean(ChickWeight$weight), 2)),
pos = 3)
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Mean weight = 121.82

11.7.6 curve()

Table 11.11: Arguments to curve()

Argument Outcome
expr The name of a function written as a function of x that returns a single

vector. You can either use base functions in R like expr = $xˆ2$, expr = x
+ 4 - 2, or use your own custom functions such as expr = my.fun, where
my.fun is previously defined (e.g.; my.fun <- function(x) {dnorm(x,
mean = 10, sd = 3))

from, to The starting (from) and ending (to) value of x to be plotted.
add A logical value indicating whether or not to add the curve to an existing

plot. If add = FALSE, then curve() will act like a high-level plotting
function and create a new plot. If add = TRUE, then curve() will act like a
low-level plotting function.

lty, lwd,
col

Additional standard line arguments

The curve() function allows you to add a line showing a specific function or equation to a plot. For
example, to add the function x2 to a plot from the x-values -10 to 10, you can run the code:

# Plot the function x^2 from -10 to +10
curve(expr = x^2,

from = -10,
to = 10, lwd = 2)
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If you want to add a custom function to a plot, you can define the function and then use that function
name as the argument to expr. For example, to plot the normal distribution with a mean of 10 and

standard deviation of 3, you can use this code:
# Plot the normal distribution with mean = 22 and sd = 3

# Create a function
my.fun <- function(x) {dnorm(x, mean = 2, sd = 3)}

curve(expr = my.fun,
from = -10,
to = 10, lwd = 2)
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In Figure~11.14, I use the curve() function to create curves of several mathematical formulas.
# Create plotting space
plot(1,

xlim = c(-5, 5), ylim = c(-5, 5),
type = "n",
main = "Plotting function lines with curve()",
ylab = "", xlab = "")

# Add x and y-axis lines
abline(h = 0)
abline(v = 0)

# set up colors
col.vec <- piratepal("google")

# x ^ 2
curve(expr = x^2, from = -5, to = 5,

add = TRUE, lwd = 3, col = col.vec[1])

# sin(x)
curve(expr = sin, from = -5, to = 5,

add = TRUE, lwd = 3, col = col.vec[2])

# dnorm(mean = 2, sd = .2)
my.fun <- function(x) {return(dnorm(x, mean = 2, sd = .2))}
curve(expr = my.fun,

from = -5, to = 5,
add = TRUE,
lwd = 3, col = col.vec[3])

# Add legend
legend("bottomright",
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Figure 11.14: Drawing function lines with curve()

legend = c("x^2", "sin(x)", "dnorm(x, 2, .2)"),
col = col.vec[1:3],
lwd = 3)

11.7.7 legend()

Table 11.12: Arguments to legend()

Argument Outcome
x, y Coordinates of the legend - for example, x = 0, y = 0 will put the text at

the coordinates (0, 0). Alternatively, you can enter a string indicating
where to put the legend (i.e.; "topright", "topleft"). For example,
"bottomright" will always put the legend at the bottom right corner of the
plot.

labels A string vector specifying the text in the legend. For example, legend =
c("Males, "Females") will create two groups with names Males and
Females.

pch, lty,
lwd, col,
pt.bg, ...

Additional arguments specifying symbol types (pch), line types (lty), line
widths (lwd), background color of symbol types 21 through 25 (pt.bg) and
several other optional arguments. See ?legend for a complete list

The last low-level plotting function that we’ll go over in detail is legend() which adds a legend to a plot.
For example, to add a legend to to bottom-right of an existing graph where data from females are plotted

in blue circles and data from males are plotted in pink circles, you’d use the following code:
# Add a legend to the bottom right of a plot

legend("bottomright", # Put legend in bottom right of graph
legend = c("Females", "Males"), # Names of groups
col = c("blue", "orange"), # Colors of symbols
pch = c(16, 16)) # Symbol types

In Figure 11.15 I use this code to add a legend to plot containing data from males and females:
# Create plot with data from females
plot(x = pirates$age[pirates$sex == "female"],

y = pirates$tattoos[pirates$sex == "female"],
xlim = c(0, 50),
ylim = c(0, 20),
pch = 16, col = yarrr::transparent("red", .7),
xlab = "Age", ylab = "Tattoos",
main = "Adding a legend with legend()")

# Add data from males
points(x = pirates$age[pirates$sex == "male"],

y = pirates$tattoos[pirates$sex == "male"],
pch = 16, col = yarrr::transparent("blue", .7))

# Add legend
legend("bottomright",

legend = c("Females", "Males"),
col = transparent(c('red', 'blue'), .5),
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Figure 11.15: Adding a legend to a plot with legend().

pch = c(16, 16),
bg = "white")

There are many more low-level plotting functions that can add additional elements to your plots. Here are
some I use. To see examples of how to use each one, check out their associated help menus.

plot(1, xlim = c(1, 100), ylim = c(1, 100),
type = "n", xaxt = "n", yaxt = "n",
ylab = "", xlab = "", main = "Adding simple figures to a plot")

text(25, 95, labels = "rect()")
rect(xleft = 10, ybottom = 70,

xright = 40, ytop = 90, lwd = 2, col = "coral")

text(25, 60, labels = "polygon()")
polygon(x = runif(6, 15, 35),

y = runif(6, 40, 55),
col = "skyblue")

text(25, 30, labels = "segments()")
segments(x0 = runif(5, 10, 40),

y0 = runif(5, 5, 25),
x1 = runif(5, 10, 40),
y1 = runif(5, 5, 25),
lwd = 2)

text(75, 95, labels = "symbols(circles)")
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Figure 11.16: Additional figures one can add to a plot with rect(), polygon(), segments(), symbols(), and
arrows().

symbols(x = runif(3, 60, 90),
y = runif(3, 60, 70),
circles = c(1, .1, .3),
add = TRUE, bg = gray(.5, .1))

text(75, 30, labels = "arrows()")
arrows(x0 = runif(3, 60, 90),

y0 = runif(3, 10, 25),
x1 = runif(3, 60, 90),
y1 = runif(3, 10, 25),
length = .1, lwd = 2)

11.8 Saving plots to a file with pdf(), jpeg() and png()

Once you’ve created a plot in R, you may wish to save it to a file so you can use it in another document.
To do this, you’ll use either the pdf(), png() or jpeg() functions. These functions will save your plot to

either a .pdf, .jpg, or .png file.

Table 11.13: Arguments to pdf(), jpeg() and png()

Argument Outcome
file The directory and name of the final plot entered as a string. For example,

to put a plot on my desktop, I’d write file =
"/Users/nphillips/Desktop/plot.pdf" when creating a pdf, and file =
"/Users/nphillips/Desktop/plot.jpg" when creating a jpeg.

width,
height

The width and height of the final plot in inches.
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Argument Outcome
dev.off() This is not an argument to pdf() and jpeg(). You just need to execute this

code after creating the plot to finish creating the image file (see examples).

To use these functions to save files, you need to follow 3 steps:

1. Execute the pdf() or jpeg() functions with file, width, height arguments.
2. Execute all your plotting code (e.g.; plot(x = 1:10, y = 1:10))
3. Complete the file by executing the command dev.off(). This tells R that you’re done creating the

file.

The chunk below shows an example of the three steps in creating a pdf:
# Step 1: Call the pdf command to start the plot
pdf(file = "/Users/ndphillips/Desktop/My Plot.pdf", # The directory you want to save the file in

width = 4, # The width of the plot in inches
height = 4) # The height of the plot in inches

# Step 2: Create the plot with R code
plot(x = 1:10,

y = 1:10)
abline(v = 0) # Additional low-level plotting commands
text(x = 0, y = 1, labels = "Random text")

# Step 3: Run dev.off() to create the file!
dev.off()

You’ll notice that after you close the plot with dev.off(), you’ll see a message in the prompt like “null
device”. That’s just R telling you that you can now create plots in the main R plotting window again.

The functions pdf(), jpeg(), and png() all work the same way, they just return different file types. If you
can, use pdf() it saves the plot in a high quality format.

11.9 Examples

Figure 11.17 shows a modified version of a scatterplot I call a balloonplot:
# Turn a boring scatterplot into a balloonplot!

# Create some random correlated data
x <- rnorm(50, mean = 50, sd = 10)
y <- x + rnorm(50, mean = 20, sd = 8)

# Set up the plotting space
plot(1,

bty = "n",
xlim = c(0, 100),
ylim = c(0, 100),
type = "n", xlab = "", ylab = "",
main = "Turning a scatterplot into a balloon plot!")

# Add gridlines
grid()
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Figure 11.17: A balloon plot

# Add Strings with segments()
segments(x0 = x + rnorm(length(x), mean = 0, sd = .5),

y0 = y - 10,
x1 = x,
y1 = y,
col = gray(.1, .95),
lwd = .5)

# Add balloons
points(x, y,

cex = 2, # Size of the balloons
pch = 21,
col = "white", # white border
bg = yarrr::piratepal("basel")) # Filling color

You can use colors and point sizes in a scatterplot to represent third variables. In Figure 11.18, I’ll plot the
relationship between pirate height and weight, but now I’ll make the size and color of each point reflect

how many tattoos the pirate has
# Just the first 100 pirates
pirates.r <- pirates[1:100,]

plot(x = pirates.r$height,
y = pirates.r$weight,
xlab = "height",
ylab = "weight",
main = "Specifying point sizes and colors with a 3rd variable",
cex = pirates.r$tattoos / 8, # Point size reflects how many tattoos they have
col = gray(1 - pirates.r$tattoos / 20)) # color reflects tattoos
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Figure 11.18: Specifying the size and color of points with a third variable.

grid()

11.10 Test your R might! Purdy pictures

1. The BeardLengths dataframe (contained in the yarrr package or online at https://github.com/
ndphillips/ThePiratesGuideToR/raw/master/data/BeardLengths.txt) contains data on the lengths
of beards from 3 different pirate ships. Calculate the average beard length for each ship using
aggregate(), then create the following barplot:

https://github.com/ndphillips/ThePiratesGuideToR/raw/master/data/BeardLengths.txt
https://github.com/ndphillips/ThePiratesGuideToR/raw/master/data/BeardLengths.txt
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2. Now using the entire BeardLengths dataframe, create the following pirateplot:
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3. Using the pirates dataset, create the following scatterplot showing the relationship between a pirate’s
age and how many parrot’s (s)he has owned (hint: to make the points solid and transparent, use pch
= 16, and col = gray(level = .5, alpha = .1)).
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Chapter 12

Plotting (II)

12.1 More colors

12.1.1 piratepal()

The yarrr package comes with several color palettes ready for you to use. The palettes are contained in
the piratepal() function. To see all the palettes, run piratepal("all")

yarrr::piratepal("all")

Here are all of the pirate palettes

Transparency is set to 0
basel
pony

xmen
decision

southpark
google
eternal

evildead
usualsuspects

ohbrother
appletv

brave
bugs
cars

nemo
rat
up

espresso
ipod
info

info2

To see a palette in detail, including a picture of what inspired the palette, include the name of the palette
in the first argument, (e.g.; "basel") and then specify the argument plot.result = TRUE. Here are a few

of my personal favorite palettes:

185
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# Show me the basel palette
yarrr::piratepal("basel",

plot.result = TRUE,
trans = .1) # Slightly transparent
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basel
trans = 0.1

# Show me the pony palette
yarrr::piratepal("pony",

plot.result = TRUE,
trans = .1) # Slightly transparent
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# Show me the evildead palette
yarrr::piratepal("evildead",

plot.result = TRUE,
trans = .1) # Slightly transparent
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Once you find a color palette you like, you can save the colors as a vector and assigning the result to an
object. For example, if I want to use the "google" palette and use them in a barplot, I would do the

following:
# Save the South Park palette to a vector
google.cols <- piratepal(palette = "google",

trans = .2)

# Create a barplot with the google colors
barplot(height = 1:5,

col = google.cols,
border = "white",
main = "Barplot with the google palette")

Barplot with the google palette

0
1

2
3

4
5

12.1.2 RColorBrewer

One package that is great for getting (and even creating) palettes is RColorBrewer. Here are some of the
palettes in the package. The name of each palette is in the first column, and the colors in each palette are

in each row:
library("RColorBrewer")
display.brewer.all()
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BrBG
PiYG

PRGn
PuOr
RdBu
RdGy

RdYlBu
RdYlGn
Spectral

Accent
Dark2
Paired

Pastel1
Pastel2

Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

12.1.3 colorRamp2

My favorite way to generate colors that represent numerical data is with the function colorRamp2 in the
circlize package (the same package that creates that really cool chordDiagram from Chapter 1). The

colorRamp2 function allows you to easily generate shades of colors based on numerical data.

The best way to explain how colorRamp2 works is by giving you an example. Let’s say that you want to
want to plot data showing the relationship between the number of drinks someone has on average per week
and the resulting risk of some adverse health effect. Further, let’s say you want to color the points as a
function of the number of packs of cigarettes per week that person smokes, where a value of 0 packs is
colored Blue, 10 packs is Orange, and 30 packs is Red. Moreover, you want the values in between these

break points of 0, 10 and 30 to be a mix of the colors. For example, the value of 5 (half way between 0 and
10) should be an equal mix of Blue and Orange.

When you run the function, the function will actually return another function that you can then use to
generate colors. Once you store the resulting function as an object (something like my.color.fun You can
then apply this new function on numerical data (in our example, the number of cigarettes someone smokes)

to obtain the correct color for each data point.

For example, let’s create the color ramp function for our smoking data points. I’ll use colorRamp2 to
create a function that I’ll call smoking.colors which takes a number as an argument, and returns the

corresponding color:
# Create color function from colorRamp2
smoking.colors <- circlize::colorRamp2(breaks = c(0, 15, 25),
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colors = c("blue", "green", "red"),
transparency = .2)

plot(1, xlim = c(-.5, 31.5), ylim = c(0, .3),
type = "n", xlab = "Cigarette Packs",
yaxt = "n", ylab = "", bty = "n",
main = "colorRamp2 Example")

segments(x0 = c(0, 15, 30),
y0 = rep(0, 3),
x1 = c(0, 15, 30),
y1 = rep(.1, 3),
lty = 2)

points(x = 0:30,
y = rep(.1, 31), pch = 16,
col = smoking.colors(0:30))

text(x = c(0, 15, 30), y = rep(.2, 3),
labels = c("Blue", "Green", "Red"))

0 5 10 15 20 25 30

colorRamp2 Example

Cigarette Packs

Blue Green Red

To see this function in action, check out the the margin Figure~?? for an example, and check out the help
menu ?colorRamp2 for more information and examples.

# Create Data
drinks <- round(rnorm(100, mean = 10, sd = 4), 2)
smokes <- drinks + rnorm(100, mean = 5, sd = 2)
risk <- 1 / (1 + exp(-(drinks + smokes) / 20 + rnorm(100, mean = 0, sd = 1)))

# Create color function from colorRamp2
smoking.colors <- circlize::colorRamp2(breaks = c(0, 15, 30),

colors = c("blue", "green", "red"),
transparency = .3)

# Bottom Plot
par(mar = c(4, 4, 5, 1))
plot(x = drinks,

y = risk,
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col = smoking.colors(smokes),
pch = 16, cex = 1.2, main = "Plot of (Made-up) Data",
xlab = "Drinks", ylab = "Risk")

mtext(text = "Point color indicates smoking rate", line = .5, side = 3)
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12.1.4 Getting colors with a kuler

One of my favorite tricks for getting great colors in R is to use a color kuler. A color kuler is a tool that
allows you to determine the exact RGB values for a color on a screen. For example, let’s say that you

wanted to use the exact colors used in the Google logo. To do this, you need to use an app that allows you
to pick colors off your computer screen. On a Mac, you can use the program called “Digital Color Meter.”
If you then move your mouse over the color you want, the software will tell you the exact RGB values of

that color. In the image below, you can see me figuring out that the RGB value of the G in Google is R: 19,
G: 72, B: 206. Using the rgb() function, I can convert these RGB values to colors in R. Using this method,

I figured out the four colors of Google!
# Store the colors of google as a vector:
google.col <- c(
rgb(19, 72, 206, maxColorValue = 255), # Google blue
rgb(206, 45, 35, maxColorValue = 255), # Google red
rgb(253, 172, 10, maxColorValue = 255), # Google yellow
rgb(18, 140, 70, maxColorValue = 255)) # Google green

# Print the result
google.col
## [1] "#1348CE" "#CE2D23" "#FDAC0A" "#128C46"
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Figure 12.1: Stealing colors from the internet. Not illegal (yet).

The vector google.col now contains the values #1348CE, #CE2D23, #FDAC0A, #128C46. These are
string values that represent colors in a way R understands. Now I can use these colors in a plot by

specifying col = google.col!
plot(1,

xlim = c(0, 7),
ylim = c(0, 1),
type = "n",
main = "Using colors stolen from a webpage")

points(x = 1:6,
y = rep(.4, 6),
pch = 16,
col = google.col[c(1, 2, 3, 1, 4, 2)],
cex = 4)

text(x = 1:6,
y = rep(.7, 6),
labels = c("G", "O", "O", "G", "L", "E"),
col = google.col[c(1, 2, 3, 1, 4, 2)],
cex = 3)
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12.2 Plot Margins

All plots in R have margins surrounding them that separate the main plotting space from the area where
the axes, labels and additional text lie. To visualize how R creates plot margins, look at margin Figure 12.2.

You can adjust the size of the margins by specifying a margin parameter using the syntax par(mar =
c(bottom, left, top, right)), where the arguments bottom, left … are the size of the margins. The
default value for mar is c(5.1, 4.1, 4.1, 2.1). To change the size of the margins of a plot you must do so with

par(mar) before you actually create the plot.

Let’s see how this works by creating two plots with different margins:In the plot on the left, I’ll set the
margins to 3 on all sides. In the plot on the right, I’ll set the margins to 6 on all sides.

# First Plot with small margins
par(mar = c(2, 2, 2, 2)) # Set the margin on all sides to 2
plot(1:10)
mtext("Small Margins", side = 3, line = 1, cex = 1.2)
mtext("par(mar = c(2, 2, 2, 2))", side = 3)

# Second Plot with large margins
par(mar = c(5, 5, 5, 5)) # Set the margin on all sides to 6
plot(1:10)
mtext("Large Margins", side = 3, line = 1, cex = 1.2)
mtext("par(mar = c(5, 5, 5, 5))", side = 3)
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Small Margins
par(mar = c(2, 2, 2, 2))

2 4 6 8 10
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4

6
8

10

Index

1:
10

Large Margins
par(mar = c(5, 5, 5, 5))

You’ll notice that the margins are so small in the first plot that you can’t even see the axis labels, while in
the second plot there is plenty (probably too much) white space around the plotting region.

In addition to using the mar parameter, you can also specify margin sizes with the mai parameter. This
acts just like mar except that the values for mai set the margin size in inches.
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Figure 12.3: A 3 x 3 matrix of plotting regions created by par(mfrow = c(3, 3))

12.3 Arranging plots with par(mfrow) and layout()

R makes it easy to arrange multiple plots in the same plotting space. The most common ways to do this is
with the par(mfrow) parameter, and the layout() function. Let’s go over each in turn:

The mfrow and mfcol parameters allow you to create a matrix of plots in one plotting space. Both
parameters take a vector of length two as an argument, corresponding to the number of rows and columns

in the resulting plotting matrix. For example, the following code sets up a 3 x 3 plotting matrix.
par(mfrow = c(2, 2)) # Create a 2 x 2 plotting matrix
# The next 4 plots created will be plotted next to each other

# Plot 1
hist(rnorm(100))

# Plot 2
plot(pirates$weight,

pirates$height, pch = 16, col = gray(.3, .1))

# Plot 3
pirateplot(weight ~ Diet,

data = ChickWeight,
pal = "info", theme = 3)
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Figure 12.4: Arranging plots into a 2x2 matrix with par(mfrow = c(2, 2))



12.3. ARRANGING PLOTS WITH PAR(MFROW) AND LAYOUT() 197

1 2 3 4

50
10

0
15

0
20

0
25

0
30

0
35

0

Figure 12.5: Arranging plots into a 2x2 matrix with par(mfrow = c(2, 2))

# Plot 4
boxplot(weight ~ Diet,

data = ChickWeight)

When you execute this code, you won’t see anything happen. However, when you execute your first
high-level plotting command, you’ll see that the plot will show up in the space reserved for the first plot
(the top left). When you execute a second high-level plotting command, R will place that plot in the

second place in the plotting matrix - either the top middle (if using par(mfrow) or the left middle (if using
par(mfcol)). As you continue to add high-level plots, R will continue to fill the plotting matrix.

So what’s the difference between par(mfrow) and par(mfcol)? The only difference is that while
par(mfrow) puts sequential plots into the plotting matrix by row, par(mfcol) will fill them by column.

When you are finished using a plotting matrix, be sure to reset the plotting parameter back to its default
state by running par(mfrow = c(1, 1)):
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# Put plotting arrangement back to its original state
par(mfrow = c(1, 1))

12.3.1 Complex plot layouts with layout()

Argument Description
mat A matrix indicating the location of the next N figures in the global

plotting space. Each value in the matrix must be 0 or a positive integer.
R will plot the first plot in the entries of the matrix with 1, the second
plot in the entries with 2,…

widths A vector of values for the widths of the columns of the plotting space.
heights A vector of values for the heights of the rows of the plotting space.

While par(mfrow) allows you to create matrices of plots, it does not allow you to create plots of different
sizes. In order to arrange plots in different sized plotting spaces, you need to use the layout() function.

Unlike par(mfrow), layout is not a plotting parameter, rather it is a function all on its own. The function
can be a bit confusing at first, so I think it’s best to start with an example. Let’s say you want to place

histograms next to a scatterplot: Let’s do this using layout:

We’ll begin by creating the layout matrix, this matrix will tell R in which order to create the plots:
layout.matrix <- matrix(c(0, 2, 3, 1), nrow = 2, ncol = 2)
layout.matrix
## [,1] [,2]
## [1,] 0 3
## [2,] 2 1

Looking at the values of layout.matrix, you can see that we’ve told R to put the first plot in the bottom
right, the second plot on the bottom left, and the third plot in the top right. Because we put a 0 in the

first element, R knows that we don’t plan to put anything in the top left area.

Now, because our layout matrix has two rows and two columns, we need to set the widths and heights of
the two columns. We do this using a numeric vector of length 2. I’ll set the heights of the two rows to 1
and 2 respectively, and the widths of the columns to 1 and 2 respectively. Now, when I run the code

layout.show(3), R will show us the plotting region we set up:
layout.matrix <- matrix(c(2, 1, 0, 3), nrow = 2, ncol = 2)

layout(mat = layout.matrix,
heights = c(1, 2), # Heights of the two rows
widths = c(2, 2)) # Widths of the two columns

layout.show(3)

Now we’re ready to put the plots together

# Set plot layout
layout(mat = matrix(c(2, 1, 0, 3),

nrow = 2,
ncol = 2),

heights = c(1, 2), # Heights of the two rows
widths = c(2, 1)) # Widths of the two columns
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Figure 12.6: A plotting layout created by setting a layout matrix with two rows and two columns. The first
row has a height of 1, and the second row has a hight of 2. Both columns have the same width of 2.
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Figure 12.7: Adding boxplots to margins of a scatterplot with layout().

# Plot 1: Scatterplot
par(mar = c(5, 4, 0, 0))
plot(x = pirates$height,

y = pirates$weight,
xlab = "height",
ylab = "weight",
pch = 16,
col = yarrr::piratepal("pony", trans = .7))

# Plot 2: Top (height) boxplot
par(mar = c(0, 4, 0, 0))
boxplot(pirates$height, xaxt = "n",

yaxt = "n", bty = "n", yaxt = "n",
col = "white", frame = FALSE, horizontal = TRUE)

# Plot 3: Right (weight) boxplot
par(mar = c(5, 0, 0, 0))
boxplot(pirates$weight, xaxt = "n",

yaxt = "n", bty = "n", yaxt = "n",
col = "white", frame = F)

12.4 Additional plotting parameters

To change the background color of a plot, add the command par(bg = col) (where col is the color you
want to use) prior to creating the plot. For example, the following code will put a light gray background
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behind a histogram:
par(bg = gray(.9)) # Create a light gray background
hist(x = rnorm(100), col = "skyblue")
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Here’s a more complex example:
parrot.data <- data.frame(
"ship" = c("Drunken\nMonkeys", "Slippery\nSnails", "Don't Ask\nDon't Tell", "The Beliebers"),
"Green" = c(200, 150, 100, 175),
"Blue " = c(150, 125, 180, 242))

# Set background color and plot margins
par(bg = rgb(61, 55, 72, maxColorValue = 255),

mar = c(6, 6, 4, 3))

plot(1, xlab = "", ylab = "", xaxt = "n",
yaxt = "n", main = "", bty = "n", type = "n",
ylim = c(0, 250), xlim = c(.25, 5.25))

# Add gridlines
abline(h = seq(0, 250, 50),

lty = 3,
col = gray(.95), lwd = 1)

# y-axis labels
mtext(text = seq(50, 250, 50),
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side = 2, at = seq(50, 250, 50),
las = 1, line = 1, col = gray(.95))

# ship labels
mtext(text = parrot.data$ship,

side = 1, at = 1:4, las = 1,
line = 1, col = gray(.95))

# Blue bars
rect(xleft = 1:4 - .35 - .04 / 2,

ybottom = rep(0, 4),
xright = 1:4 - .04 / 2,
ytop = parrot.data$Blue,
col = "lightskyblue1", border = NA)

# Green bars
rect(xleft = 1:4 + .04 / 2,

ybottom = rep(0, 4),
xright = 1:4 + .35 + .04 / 2,
ytop = parrot.data$Green,
col = "lightgreen", border = NA)

legend(4.5, 250, c("Blue", "Green"),
col = c("lightskyblue1", "lightgreen"), pch = rep(15, 2),
bty = "n", pt.cex = 1.5, text.col = "white")

# Additional margin text
mtext("Number of Green and Blue parrots on 4 ships",

side = 3, cex = 1.5, col = "white")
mtext("Parrots", side = 2, col = "white", line = 3.5)
mtext("Source: Drunken survey on 22 May 2015", side = 1,

at = 0, adj = 0, line = 3, font = 3, col = "white")
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Figure 12.8: Use par(bg = my.color) before creating a plot to add a colored background.
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Chapter 13

Hypothesis Tests

In this chapter we’ll cover 1 and 2 sample null hypothesis tests: like the t-test, correlation test, and
chi-square test:

library(yarrr) # Load yarrr to get the pirates data

# 1 sample t-test
# Are pirate ages different than 30 on average?
t.test(x = pirates$age,

mu = 30)

# 2 sample t-test
# Do females and males have different numbers of tattoos?
sex.ttest <- t.test(formula = tattoos ~ sex,

data = pirates,
subset = sex %in% c("male", "female"))

sex.ttest # Print result

## Access specific values from test
sex.ttest$statistic
sex.ttest$p.value
sex.ttest$conf.int

# Correlation test
# Is there a relationship between age and height?
cor.test(formula = ~ age + height,

data = pirates)

# Chi-Square test
# Is there a relationship between college and favorite pirate?
chisq.test(x = pirates$college,

y = pirates$favorite.pirate)

Do we get more treasure from chests buried in sand or at the bottom of the ocean? Is there a relationship
between the number of scars a pirate has and how much grogg he can drink? Are pirates with body
piercings more likely to wear bandannas than those without body piercings? Glad you asked, in this

chapter, we’ll answer these questions using 1 and 2 sample frequentist hypothesis tests.

As this is a Pirate’s Guide to R, and not a Pirate’s Guide to Statistics, we won’t cover all the theoretical
background behind frequentist null hypothesis tests (like t-tests) in much detail. However, it’s important to

205
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Figure 13.1: Sadly, this still counts as just one tattoo.

cover three main concepts: Descriptive statistics, Test statistics, and p-values. To do this, let’s talk about
body piercings.

13.1 A short introduction to hypothesis tests

As you may know, pirates are quite fond of body piercings. Both as a fashion statement, and as a handy
place to hang their laundry. Now, there is a stereotype that European pirates have more body piercings
than American pirates. But is this true? To answer this, I conducted a survey where I asked 10 American
and 10 European pirates how many body piercings they had. The results are below, and a Pirateplot of the

data is in Figure ??:
# Body piercing data
american.bp <- c(3, 5, 2, 1, 4, 4, 6, 3, 5, 4)
european.bp <- c(6, 5, 7, 7, 6, 3, 4, 6, 5, 4)

# Store data in a dataframe
bp.survey <- data.frame("bp" = c(american.bp, european.bp),

"group" = rep(c("American", "European"), each = 10),
stringsAsFactors = FALSE)
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Figure 13.2: A Pirateplot of the body piercing data.

yarrr::pirateplot(bp ~ group,
data = bp.survey,
main = "Body Piercing Survey",
ylab = "Number of Body Piercings",
xlab = "Group",
theme = 2, point.o = .8, cap.beans = TRUE)

13.1.1 Null v Alternative Hypothesis

In null hypothesis tests, you always start with a null hypothesis. The specific null hypothesis you choose
will depend on the type of question you are asking, but in general, the null hypothesis states that nothing

is going on and everything is the same. For example, in our body piercing study, our null hypothesis is that
American and European pirates have the same number of body piercings on average.

The alternative hypothesis is the opposite of the null hypothesis. In this case, our alternative hypothesis is
that American and European pirates do not have the same number of piercings on average. We can have
different types of alternative hypotheses depending on how specific we want to be about our prediction. We
can make a 1-sided (also called 1-tailed) hypothesis, by predicting the direction of the difference between
American and European pirates. For example, our alternative hypothesis could be that European pirates

have more piercings on average than American pirates.

Alternatively, we could make a 2-sided (also called 2-tailed) alternative hypothesis that American and
European pirates simply differ in their average number of piercings, without stating which group has more

piercings than the other.

Once we’ve stated our null and alternative hypotheses, we collect data and then calculate descriptive
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statistics.

13.1.2 Descriptive statistics

Descriptive statistics (also called sample statistics) describe samples of data. For example, a mean, median,
or standard deviation of a dataset is a descriptive statistic of that dataset. Let’s calculate some descriptive

statistics on our body piercing survey American and European pirates using the summary() function:
# Pring descriptive statistics of the piercing data
summary(american.bp)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.0 3.0 4.0 3.7 4.8 6.0
summary(european.bp)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.0 4.2 5.5 5.3 6.0 7.0

Well, it looks like our sample of 10 American pirates had 3.7 body piercings on average, while our sample
of 10 European pirates had 5.3 piercings on average. But is this difference large or small? Are we justified
in concluding that American and European pirates in general differ in how many body piercings they have?

To answer this, we need to calculate a test statistic

13.1.3 Test Statistics

An test statistic compares descriptive statistics, and determines how different they are. The formula you
use to calculate a test statistics depends the type of test you are conducting, which depends on many
factors, from the scale of the data (i.e.; is it nominal or interval?), to how it was collected (i.e.; was the
data collected from the same person over time or were they all different people?), to how its distributed

(i.e.; is it bell-shaped or highly skewed?).

For now, I can tell you that the type of data we are analyzing calls for a two-sample T-test. This test will
take the descriptive statistics from our study, and return a test-statistic we can then use to make a decision
about whether American and European pirates really differ. To calculate a test statistic from a two-sample
t-test, we can use the t.test() function in R. Don’t worry if it’s confusing for now, we’ll go through it in

detail shortly.
# Conduct a two-sided t-test comparing the vectors american.bp and european.bp
# and save the results in an object called bp.test
bp.test <- t.test(x = american.bp,

y = european.bp,
alternative = "two.sided")

# Print the main results
bp.test
##
## Welch Two Sample t-test
##
## data: american.bp and european.bp
## t = -3, df = 20, p-value = 0.02
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.93 -0.27
## sample estimates:
## mean of x mean of y
## 3.7 5.3
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Figure 13.3: p-values are like bullshit detectors against the null hypothesis. The smaller the p-value, the
more likely it is that the null-hypothesis (the idea that the groups are the same) is bullshit.

It looks like our test-statistic is -2.52. If there was really no difference between the groups of pirates, we
would expect a test statistic close to 0. Because test-statistic is -2.52, this makes us think that there really

is a difference. However, in order to make our decision, we need to get the p-value from the test.

13.1.4 p-value

The p-value is a probability that reflects how consistent the test statistic is with the hypothesis that the
groups are actually the same. Or more formally, a p-value can be interpreted as follows:

13.1.4.1 Definition of a p-value: Assuming that there the null hypothesis is true (i.e.; that
there is no difference between the groups), what is the probability that we would

have gotten a test statistic as far away from 0 as the one we actually got?

For this problem, we can access the p-value as follows:
# What is the p-value from our t-test?
bp.test$p.value
## [1] 0.021

The p-value we got was 0.02, this means that, assuming the two populations of American and European
pirates have the same number of body piercings on average, the probability that we would obtain a test

statistic as large as -2.52 is 2.1% . This is very small, but is it small enough to decide that the null
hypothesis is not true? It’s hard to say and there is no definitive answer. However, most pirates use a

decision threshold of p < 0.05 to determine if we should reject the null hypothesis or not. In other words, if
you obtain a p-value less than 0.05, then you reject the null hypothesis. Because our p-value of 0.02 is less
than 0.05, we would reject the null hypothesis and conclude that the two populations are not be the same.

13.1.4.2 p-values are bullshit detectors against the null hypothesis

P-values sounds complicated – because they are (In fact, most psychology PhDs get the definition wrong).
It’s very easy to get confused and not know what they are or how to use them. But let me help by putting

it another way: a p-value is like a bullshit detector against the null hypothesis that goes off when the
p-value is too small. If a p-value is too small, the bullshit detector goes off and says “Bullshit! There’s no
way you would get data like that if the groups were the same!” If a p-value is not too small, the bullshit

alarm stays silent, and we conclude that we cannot reject the null hypothesis.
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Figure 13.4: Despite what you may see in movies, men cannot get pregnant. And despite what you may
want to believe, p-values do not tell you the probability that the null hypothesis is true!

13.1.4.3 How small of a p-value is too small?

Traditionally a p-value of 0.05 (or sometimes 0.01) is used to determine ‘statistical significance.’ In other
words, if a p-value is less than .05, most researchers then conclude that the null hypothesis is false.
However, .05 is not a magical number. Anyone who really believes that a p-value of .06 is much less

significant than a p-value of 0.04 has been sniffing too much glue. However, in order to be consistent with
tradition, I will adopt this threshold for the remainder of this chapter. That said, let me reiterate that a

p-value threshold of 0.05 is just as arbitrary as a p-value of 0.09, 0.06, or 0.12156325234.

13.1.4.4 Does the p-value tell us the probability that the null hypothesis is true?

No!!! The p-value does not tell you the probability that the null hypothesis is true. In other
words, if you calculate a p-value of .04, this does not mean that the probability that the null hypothesis is
true is 4%. Rather, it means that if the null hypothesis was true, the probability of obtaining the result you

got is 4%. Now, this does indeed set off our bullshit detector, but again, it does not mean that the
probability that the null hypothesis is true is 4%.

Let me convince you of this with a short example. Imagine that you and your partner have been trying to
have a baby for the past year. One day, your partner calls you and says “Guess what! I took a pregnancy

test and it came back positive!! I’m pregnant!!” So, given the positive pregnancy test, what is the
probability that your partner is really pregnant?

Now, imagine that the pregnancy test your partner took gives incorrect results in 1% of cases. In other
words, if you are pregnant, there is a 1% chance that the test will make a mistake and say that you are not
pregnant. If you really are not pregnant, there is a 1% change that the test make a mistake and say you

are pregnant.



13.2. HYPOTHESIS TEST OBJECTS: HTEST 211

Ok, so in this case, the null hypothesis here is that your partner is not pregnant, and the alternative
hypothesis is that they are pregnant. Now, if the null hypothesis is true, then the probability that they
would have gotten an (incorrect) positive test result is just 1%. Does this mean that the probability that

your partner is not pregnant is only 1%.

No. Your partner is a man. The probability that the null hypothesis is true (i.e. that he is not pregnant),
is 100%, not 1%. Your stupid boyfriend doesn’t understand basic biology and decided to buy an expensive

pregnancy test anyway.

This is an extreme example of course – in most tests that you do, there will be some positive probability
that the null hypothesis is false. However, in order to reasonably calculate an accurate probability that the
null hypothesis is true after collecting data, you must take into account the prior probability that the null
hypothesis was true before you collected data. The method we use to do this is with Bayesian statistics.

We’ll go over Bayesian statistics in a later chapter.

13.2 Hypothesis test objects: htest

R stores hypothesis tests in special object classes called htest. htest objects contain all the major results
from a hypothesis test, from the test statistic (e.g.; a t-statistic for a t-test, or a correlation coefficient for a
correlation test), to the p-value, to a confidence interval. To show you how this works, let’s create an htest
object called height.htest containing the results from a two-sample t-test comparing the heights of male

and female pirates:
# T-test comparing male and female heights
# stored in a new htest object called height.htest
height.htest <- t.test(formula = height ~ sex,

data = pirates,
subset = sex %in% c("male", "female"))

Once you’ve created an htest object, you can view a print-out of the main results by just evaluating the
object name:

# Print main results from height.htest
height.htest
##
## Welch Two Sample t-test
##
## data: height by sex
## t = -20, df = 1000, p-value <2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -15 -13
## sample estimates:
## mean in group female mean in group male
## 163 177

Just like in dataframes, you can also access specific elements of the htest object by using the $ symbol. To
see all the named elements in the object, run names():

# Show me all the elements in the height.htest object
names(height.htest)
## [1] "statistic" "parameter" "p.value" "conf.int" "estimate"
## [6] "null.value" "alternative" "method" "data.name"

Now, if we want to access the test statistic or p-value directly, we can just use $:
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# Get the test statistic
height.htest$statistic
## t
## -21

# Get the p-value
height.htest$p.value
## [1] 1.4e-78

# Get a confidence interval for the mean
height.htest$conf.int
## [1] -15 -13
## attr(,"conf.level")
## [1] 0.95

13.3 T-test: t.test()

1−Sample t−test

Number of Tattoos

0 5 10 15 20

Null Hypothesis
Mean = 5

2−Sample t−test

Number of Tattoos

0 5 10 15 20

mean(EP)
= 9.34

mean(No EP)
= 9.61

To compare the mean of 1 group to a specific value, or to compare the means of 2 groups, you do a t-test.
The t-test function in R is t.test(). The t.test() function can take several arguments, here I’ll

emphasize a few of them. To see them all, check the help menu for t.test (?t.test).

13.3.1 1-sample t-test
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Argument Description
x A vector of data whose mean you want to compare to the null

hypothesis mu
mu The population mean under the null hypothesis. For example, mu = 0

will test the null hypothesis that the true population mean is 0.
alternative A string specifying the alternative hypothesis. Can be "two.sided"

indicating a two-tailed test, or "greater" or “less" for a one-tailed
test.

In a one-sample t-test, you compare the data from one group of data to some hypothesized mean. For
example, if someone said that pirates on average have 5 tattoos, we could conduct a one-sample test

comparing the data from a sample of pirates to a hypothesized mean of 5. To conduct a one-sample t-test
in R using t.test(), enter a vector as the main argument x, and the null hypothesis as the argument mu

Here, I’ll conduct a t-test to see if the average number of tattoos owned by pirates is different from 5:
tattoo.ttest <- t.test(x = pirates$tattoos, # Vector of data

mu = 5) # Null: Mean is 5

# Print the result
tattoo.ttest
##
## One Sample t-test
##
## data: pirates$tattoos
## t = 40, df = 1000, p-value <2e-16
## alternative hypothesis: true mean is not equal to 5
## 95 percent confidence interval:
## 9.2 9.6
## sample estimates:
## mean of x
## 9.4

As you can see, the function printed lots of information: the sample mean was 9.43, the test statistic
(41.59), and the p-value was 2e-16 (which is virtually 0). Because 2e-16 is less than 0.05, we would reject

the null hypothesis that the true mean is equal to 5.

Now, what happens if I change the null hypothesis to a mean of 9.4? Because the sample mean was 9.43,
quite close to 9.4, the test statistic should decrease, and the p-value should increase:

tattoo.ttest <- t.test(x = pirates$tattoos,
mu = 9.5) # Null: Mean is 9.4

tattoo.ttest
##
## One Sample t-test
##
## data: pirates$tattoos
## t = -0.7, df = 1000, p-value = 0.5
## alternative hypothesis: true mean is not equal to 9.5
## 95 percent confidence interval:
## 9.2 9.6
## sample estimates:
## mean of x
## 9.4



214 CHAPTER 13. HYPOTHESIS TESTS

Just as we predicted! The test statistic decreased to just -0.67, and the p-value increased to 0.51. In other
words, our sample mean of 9.43 is reasonably consistent with the hypothesis that the true population mean

is 9.50.

13.3.2 2-sample t-test

In a two-sample t-test, you compare the means of two groups of data and test whether or not they are the
same. We can specify two-sample t-tests in one of two ways. If the dependent and independent variables

are in a dataframe, you can use the formula notation in the form y ~ x, and specify the dataset containing
the data in data

# Fomulation of a two-sample t-test

# Method 1: Formula
t.test(formula = y ~ x, # Formula

data = df) # Dataframe containing the variables

Alternatively, if the data you want to compare are in individual vectors (not together in a dataframe), you
can use the vector notation:

# Method 2: Vector
t.test(x = x, # First vector

y = y) # Second vector

For example, let’s test a prediction that pirates who wear eye patches have fewer tattoos on average than
those who don’t wear eye patches. Because the data are in the pirates dataframe, we can do this using

the formula method:
# 2-sample t-test
# IV = eyepatch (0 or 1)
# DV = tattoos

tat.patch.htest <- t.test(formula = tattoos ~ eyepatch,
data = pirates)

This test gave us a test statistic of 1.22 and a p-value of 0.22. Because the p-value is greater than 0.05, we
would fail to reject the null hypothesis.

# Show me all of the elements in the htest object
names(tat.patch.htest)
## [1] "statistic" "parameter" "p.value" "conf.int" "estimate"
## [6] "null.value" "alternative" "method" "data.name"

Now, we can, for example, access the confidence interval for the mean differences using $
# Confidence interval for mean differences
tat.patch.htest$conf.int
## [1] -0.16 0.71
## attr(,"conf.level")
## [1] 0.95

13.3.2.1 Using subset to select levels of an IV

If your independent variable has more than two values, the t.test() function will return an error because
it doesn’t know which two groups you want to compare. For example, let’s say I want to compare the
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number of tattoos of pirates of different ages. Now, the age column has many different values, so if I don’t
tell t.test() which two values of age I want to compare, I will get an error like this:

# Will return an error because there are more than
# 2 levels of the age IV

t.test(formula = tattoos ~ age,
data = pirates)

To fix this, I need to tell the t.test() function which two values of age I want to test. To do this, use the
subset argument and indicate which values of the IV you want to test using the %in% operator. For

example, to compare the number of tattoos between pirates of age 29 and 30, I would add the subset =
age %in% c(29, 30) argument like this:

# Compare the tattoos of pirates aged 29 and 30:
tatage.htest <- t.test(formula = tattoos ~ age,

data = pirates,
subset = age %in% c(29, 30)) # Compare age of 29 to 30

tatage.htest
##
## Welch Two Sample t-test
##
## data: tattoos by age
## t = 0.3, df = 100, p-value = 0.8
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.1 1.4
## sample estimates:
## mean in group 29 mean in group 30
## 10.1 9.9

Looks like we got a p-value of 0.79 which is pretty high and suggests that we should fail to reject the null
hypothesis.

You can select any subset of data in the subset argument to the t.test() function – not just the primary
independent variable. For example, if I wanted to compare the number of tattoos between pirates who

wear headbands or not, but only for female pirates, I would do the following
# Is there an effect of college on # of tattoos
# only for female pirates?

t.test(formula = tattoos ~ college,
data = pirates,
subset = sex == "female")

##
## Welch Two Sample t-test
##
## data: tattoos by college
## t = 1, df = 500, p-value = 0.3
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.27 0.92
## sample estimates:
## mean in group CCCC mean in group JSSFP
## 9.6 9.3
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y

Figure 13.5: Three different correlations. A strong negative correlation, a very small positive correlation,
and a strong positive correlation.

13.4 Correlation: cor.test()

Argument Description
formula A formula in the form ~ x + y, where x and y are the names of the two

variables you are testing. These variables should be two separate
columns in a dataframe.

data The dataframe containing the variables x and y
alternative A string specifying the alternative hypothesis. Can be "two.sided"

indicating a two-tailed test, or "greater" or “less" for a one-tailed
test.

method A string indicating which correlation coefficient to calculate and test.
"pearson" (the default) stands for Pearson, while "kendall" and
"spearman" stand for Kendall and Spearman correlations respectively.

subset A vector specifying a subset of observations to use. E.g.; subset = sex
== "female"

Next we’ll cover two-sample correlation tests. In a correlation test, you are accessing the relationship
between two variables on a ratio or interval scale: like height and weight, or income and beard length. The
test statistic in a correlation test is called a correlation coefficient and is represented by the letter r. The
coefficient can range from -1 to +1, with -1 meaning a strong negative relationship, and +1 meaning a

strong positive relationship. The null hypothesis in a correlation test is a correlation of 0, which means no
relationship at all:

To run a correlation test between two variables x and y, use the cor.test() function. You can do this in
one of two ways, if x and y are columns in a dataframe, use the formula notation (formula = ~ x + y). If

x and y are separate vectors (not in a dataframe), use the vector notation (x, y):
# Correlation Test
# Correlating two variables x and y

# Method 1: Formula notation
## Use if x and y are in a dataframe
cor.test(formula = ~ x + y,

data = df)
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# Method 2: Vector notation
## Use if x and y are separate vectors
cor.test(x = x,

y = y)

Let’s conduct a correlation test on the pirates dataset to see if there is a relationship between a pirate’s
age and number of parrots they’ve had in their lifetime. Because the variables (age and parrots) are in a

dataframe, we can do this in formula notation:
# Is there a correlation between a pirate's age and
# the number of parrots (s)he's owned?

# Method 1: Formula notation
age.parrots.ctest <- cor.test(formula = ~ age + parrots,

data = pirates)
# Print result
age.parrots.ctest
##
## Pearson's product-moment correlation
##
## data: age and parrots
## t = 6, df = 1000, p-value = 1e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.13 0.25
## sample estimates:
## cor
## 0.19

We can also do the same thing using vector notation – the results will be exactly the same:
# Method 2: Vector notation
age.parrots.ctest <- cor.test(x = pirates$age,

y = pirates$parrots)

# Print result
age.parrots.ctest
##
## Pearson's product-moment correlation
##
## data: pirates$age and pirates$parrots
## t = 6, df = 1000, p-value = 1e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.13 0.25
## sample estimates:
## cor
## 0.19

Looks like we have a positive correlation of 0.19 and a very small p-value. To see what information we can
extract for this test, let’s run the command names() on the test object:

names(age.parrots.ctest)
## [1] "statistic" "parameter" "p.value" "estimate" "null.value"
## [6] "alternative" "method" "data.name" "conf.int"
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Looks like we’ve got a lot of information in this test object. As an example, let’s look at the confidence
interval for the population correlation coefficient:

# 95% confidence interval of the correlation
# coefficient
age.parrots.ctest$conf.int
## [1] 0.13 0.25
## attr(,"conf.level")
## [1] 0.95

Just like the t.test() function, we can use the subset argument in the cor.test() function to conduct a
test on a subset of the entire dataframe. For example, to run the same correlation test between a pirate’s
age and the number of parrot’s she’s owned, but only for female pirates, I can add the subset = sex ==

"female" argument:
# Is there a correlation between age and
# number parrots ONLY for female pirates?

cor.test(formula = ~ age + parrots,
data = pirates,
subset = sex == "female")

##
## Pearson's product-moment correlation
##
## data: age and parrots
## t = 5, df = 500, p-value = 4e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.12 0.30
## sample estimates:
## cor
## 0.21

The results look pretty much identical. In other words, the strength of the relationship between a pirate’s
age and the number of parrot’s they’ve owned is pretty much the same for female pirates and pirates in

general.

13.5 Chi-square: chsq.test()

Next, we’ll cover chi-square tests. In a chi-square test test, we test whether or not there is a difference in
the rates of outcomes on a nominal scale (like sex, eye color, first name etc.). The test statistic of a

chi-square text is χ2 and can range from 0 to Infinity. The null-hypothesis of a chi-square test is that χ2 =
0 which means no relationship.

A key difference between the chisq.test() and the other hypothesis tests we’ve covered is that
chisq.test() requires a table created using the table() function as its main argument. You’ll see how

this works when we get to the examples.

13.5.0.1 1-sample Chi-square test

If you conduct a 1-sample chi-square test, you are testing if there is a difference in the number of members
of each category in the vector. Or in other words, are all category memberships equally prevalent? Here’s

the general form of a one-sample chi-square test:
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# General form of a one-sample chi-square test
chisq.test(x = table(x))

As you can see, the main argument to chisq.test() should be a table of values created using the table()
function. For example, let’s conduct a chi-square test to see if all pirate colleges are equally prevalent in

the pirates data. We’ll start by creating a table of the college data:
# Frequency table of pirate colleges
table(pirates$college)
##
## CCCC JSSFP
## 658 342

Just by looking at the table, it looks like pirates are much more likely to come from Captain Chunk’s
Cannon Crew (CCCC) than Jack Sparrow’s School of Fashion and Piratery (JSSFP). For this reason, we
should expect a very large test statistic and a very small p-value. Let’s test it using the chisq.test()

function.
# Are all colleges equally prevelant?
college.cstest <- chisq.test(x = table(pirates$college))

college.cstest
##
## Chi-squared test for given probabilities
##
## data: table(pirates$college)
## X-squared = 100, df = 1, p-value <2e-16

Indeed, with a test statistic of 99.86 and a tiny p-value, we can safely reject the null hypothesis and
conclude that certain college are more popular than others.

13.5.0.2 2-sample Chi-square test

If you want to see if the frequency of one nominal variable depends on a second nominal variable, you’d
conduct a 2-sample chi-square test. For example, we might want to know if there is a relationship between
the college a pirate went to, and whether or not he/she wears an eyepatch. We can get a contingency table

of the data from the pirates dataframe as follows:
# Do pirates that wear eyepatches have come from different colleges
# than those that do not wear eyepatches?

table(pirates$eyepatch,
pirates$college)

##
## CCCC JSSFP
## 0 225 117
## 1 433 225

To conduct a chi-square test on these data, we will enter table of the two data vectors:
# Is there a relationship between a pirate's
# college and whether or not they wear an eyepatch?

colpatch.cstest <- chisq.test(x = table(pirates$college,
pirates$eyepatch))
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colpatch.cstest
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(pirates$college, pirates$eyepatch)
## X-squared = 0, df = 1, p-value = 1

It looks like we got a test statistic of χ2 = 0 and a p-value of 1. At the traditional p = .05 threshold for
significance, we would conclude that we fail to reject the null hypothesis and state that we do not have

enough information to determine if pirates from different colleges differ in how likely they are to wear eye
patches.

13.5.1 Getting APA-style conclusions with the apa function

Most people think that R pirates are a completely unhinged, drunken bunch of pillaging buffoons. But
nothing could be further from the truth! R pirates are a very organized and formal people who like their
statistical output to follow strict rules. The most famous rules are those written by the American Pirate
Association (APA). These rules specify exactly how an R pirate should report the results of the most

common hypothesis tests to her fellow pirates.

For example, in reporting a t-test, APA style dictates that the result should be in the form t(df) = X, p =
Y (Z-tailed), where df is the degrees of freedom of the text, X is the test statistic, Y is the p-value, and Z is
the number of tails in the test. Now you can of course read these values directly from the test result, but if
you want to save some time and get the APA style conclusion quickly, just use the apa function. Here’s

how it works:

Consider the following two-sample t-test on the pirates dataset that compares whether or not there is a
significant age difference between pirates who wear headbands and those who do not:

test.result <- t.test(age ~ headband,
data = pirates)

test.result
##
## Welch Two Sample t-test
##
## data: age by headband
## t = 0.4, df = 100, p-value = 0.7
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.0 1.5
## sample estimates:
## mean in group no mean in group yes
## 28 27

It looks like the test statistic is 0.35, degrees of freedom is 135.47, and the p-value is 0.73. Let’s see how
the apa function gets these values directly from the test object:

yarrr::apa(test.result)
## [1] "mean difference = -0.22, t(135.47) = 0.35, p = 0.73 (2-tailed)"

As you can see, the apa function got the values we wanted and reported them in proper APA style. The
apa function will even automatically adapt the output for Chi-Square and correlation tests if you enter
such a test object. Let’s see how it works on a correlation test where we correlate a pirate’s age with the

number of parrots she has owned:
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# Print an APA style conclusion of the correlation
# between a pirate's age and # of parrots
age.parrots.ctest <- cor.test(formula = ~ age + parrots,

data = pirates)

# Pring result
age.parrots.ctest
##
## Pearson's product-moment correlation
##
## data: age and parrots
## t = 6, df = 1000, p-value = 1e-09
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.13 0.25
## sample estimates:
## cor
## 0.19

# Print the apa style conclusion!
yarrr::apa(age.parrots.ctest)
## [1] "r = 0.19, t(998) = 6.13, p < 0.01 (2-tailed)"

The apa function has a few optional arguments that control things like the number of significant digits in
the output, and the number of tails in the test. Run ?apa to see all the options.

13.6 Test your R might!

The following questions are based on data from either the movies or the pirates dataset in the yarrr
package. Make sure to load the package first to get access to the data!

1. Do male pirates have significantly longer beards than female pirates? Test this by conducting a t-test
on the relevant data in the pirates dataset. (Hint: You’ll have to select just the female and male pirates
and remove the ‘other’ ones using subset())

2. Are pirates whose favorite pixar movie is Up more or less likely to wear an eye patch than those whose
favorite pixar movie is Inside Out? Test this by conducting a chi-square test on the relevant data in
the pirates dataset. (Hint: Create a new dataframe that only contains data from pirates whose favorite
move is either Up or Inside Out using subset(). Then do the test on this new dataframe.)

3. Do longer movies have significantly higher budgets than shorter movies? Answer this question by
conducting a correlation test on the appropriate data in the movies dataset.

4. Do R rated movies earn significantly more money than PG-13 movies? Test this by conducting a t-test
on the relevant data in the movies dataset.

5. Are certain movie genres significantly more common than others in the movies dataset? Test this by
conducting a 1-sample chi-square test on the relevant data in the movies dataset.

6. Do sequels and non-sequels differ in their ratings? Test this by conducting a 2-sample chi-square test
on the relevant data in the movies dataset.
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Chapter 14

ANOVA

In the last chapter we covered 1 and two sample hypothesis tests. In these tests, you are either comparing 1
group to a hypothesized value, or comparing the relationship between two groups (either their means or
their correlation). In this chapter, we’ll cover how to analyse more complex experimental designs with

ANOVAs.

When do you conduct an ANOVA? You conduct an ANOVA when you are testing the effect of one or more
nominal (aka factor) independent variable(s) on a numerical dependent variable. A nominal (factor)
variable is one that contains a finite number of categories with no inherent order. Gender, profession,

experimental conditions, and Justin Bieber albums are good examples of factors (not necessarily of good
music). If you only include one independent variable, this is called a One-way ANOVA. If you include two
independent variables, this is called a Two-way ANOVA. If you include three independent variables it is

called a Menage a trois ‘NOVA.

Ok maybe it’s not yet, but we repeat it enough it will be and we can change the world.

For example, let’s say you want to test how well each of three different cleaning fluids are at getting poop
off of your poop deck.To test this, you could do the following: over the course of 300 cleaning days, you
clean different areas of the deck with the three different cleaners. You then record how long it takes for
each cleaner to clean its portion of the deck. At the same time, you could also measure how well the

cleaner is cleaning two different types of poop that typically show up on your deck: shark and parrot. Here,
your independent variables cleaner and type are factors, and your dependent variable time is numeric.

Thankfully, this experiment has already been conducted. The data are recorded in a dataframe called
poopdeck in the yarrr package. Here’s how the first few rows of the data look:

head(poopdeck)
## day cleaner type time int.fit me.fit
## 1 1 a parrot 47 46 54
## 2 1 b parrot 55 54 54
## 3 1 c parrot 64 56 47
## 4 1 a shark 101 86 78
## 5 1 b shark 76 77 77
## 6 1 c shark 63 62 71

We can visualize the poopdeck data using (of course) a pirate plot:
pirateplot(formula = time ~ cleaner + type,

data = poopdeck,
ylim = c(0, 150),
xlab = "Cleaner",
ylab = "Cleaning Time (minutes)",

223
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Figure 14.1: Menage a trois wine – the perfect pairing for a 3-way ANOVA



14.1. FULL-FACTORIAL BETWEEN-SUBJECTS ANOVA 225

main = "poopdeck data",
back.col = gray(.97),
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Given this data, we can use ANOVAs to answer four separate questions:

Question Analysis Formula
Is there a difference between the different cleaners
on cleaning time (ignoring poop type)?

One way ANOVA time ~ cleaner

Is there a difference between the different poop
types on cleaning time (ignoring which cleaner is
used)

One-way ANOVA time ~ type

Is there a unique effect of the cleaner or poop
types on cleaning time?

Two-way ANOVA time ~ cleaner + type

Does the effect of cleaner depend on the poop
type?

Two-way ANOVA
with interaction
term

time ~ cleaner * type

14.1 Full-factorial between-subjects ANOVA

There are many types of ANOVAs that depend on the type of data you are analyzing. In fact, there are so
many types of ANOVAs that there are entire books explaining differences between one type and another.
For this book, we’ll cover just one type of ANOVAs called full-factorial, between-subjects ANOVAs. These

are the simplest types of ANOVAs which are used to analyze a standard experimental design. In a
full-factorial, between-subjects ANOVA, participants (aka, source of data) are randomly assigned to a
unique combination of factors – where a combination of factors means a specific experimental condition.
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For example, consider a psychology study comparing the effects of caffeine on cognitive performance. The
study could have two independent variables: drink type (soda vs. coffee vs. energy drink), and drink dose
(.25l, .5l, 1l). In a full-factorial design, each participant in the study would be randomly assigned to one

drink type and one drink dose condition. In this design, there would be 3 x 3 = 9 conditions.

For the rest of this chapter, I will refer to full-factorial between-subjects ANOVAs as ‘standard’ ANOVAs

14.1.1 What does ANOVA stand for?

ANOVA stands for “Analysis of variance.” At first glance, this sounds like a strange name to give to a test
that you use to find differences in means, not differences in variances. However, ANOVA actually uses
variances to determine whether or not there are ‘real’ differences in the means of groups. Specifically, it
looks at how variable data are within groups and compares that to the variability of data between groups.
If the between-group variance is large compared to the within group variance, the ANOVA will conclude
that the groups do differ in their means. If the between-group variance is small compared to the within
group variance, the ANOVA will conclude that the groups are all the same. See Figure~?? for a visual

depiction of an ANOVA.

14.2 4 Steps to conduct an ANOVA

Here are the 4 steps you should follow to conduct a standard ANOVA in R:

1. Create an ANOVA object using the aov() function. In the aov() function, specify the independent
and dependent variable(s) with a formula with the format y ~ x1 + x2 where y is the dependent
variable, and x1, x2 … are one (more more) factor independent variables.

# Step 1: Create an aov object
mod.aov <- aov(formula = y ~ x1 + x2 + ...,

data = data)

2. Create a summary ANOVA table by applying the summary() function to the ANOVA object you
created in Step 1.

# Step 2: Look at a summary of the aov object
summary(mod.aov)

3. If necessary, calculate post-hoc tests by applying a post-hoc testing function like TukeyHSD() to the
ANOVA object you created in Step 1.

# Step 3: Calculate post-hoc tests
TukeyHSD(mod.aov)

4. If necessary, interpret the nature of the group differences by creating a linear regression object using
lm() using the same arguments you used in the aov() function in Step 1.

# Step 4: Look at coefficients
mod.lm <- lm(formula = y ~ x1 + x2 + ...,

data = data)

summary(mod.lm)
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Figure 14.2: How ANOVAs work. ANOVA compares the variability between groups (i.e.; the differences
in the group means) to the variability within groups (i.e.; how much individuals generally differ from each
other). If the variability between groups is small compared to the variability between groups, ANOVA will
return a non-significant result – suggesting that the groups are not really different. If the variability between
groups is large compared to the variability within groups, ANOVA will return a significant result – indicating
that the groups are really different.
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Figure 14.3: How ANOVAs work. ANOVA compares the variability between groups (i.e.; the differences
in the group means) to the variability within groups (i.e.; how much individuals generally differ from each
other). If the variability between groups is small compared to the variability between groups, ANOVA will
return a non-significant result – suggesting that the groups are not really different. If the variability between
groups is large compared to the variability within groups, ANOVA will return a significant result – indicating
that the groups are really different.
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14.3 Ex: One-way ANOVA

Let’s do an example by running both a one-way ANOVA on the poopdeck data. We’ll set cleaning time
time as the dependent variable and the cleaner type cleaner as the independent variable. We can

represent the data as a pirateplot:
yarrr::pirateplot(time ~ cleaner,

data = poopdeck,
theme = 2,
cap.beans = TRUE,
main = "formula = time ~ cleaner")

formula = time ~ cleaner
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From the plot, it looks like cleaners a and b are the same, and cleaner c is a bit faster. To test this, we’ll
create an ANOVA object with aov. Because time is the dependent variable and cleaner is the

independent variable, we’ll set the formula to formula = time ~ cleaner
# Step 1: aov object with time as DV and cleaner as IV
cleaner.aov <- aov(formula = time ~ cleaner,

data = poopdeck)

Now, to see a full ANOVA summary table of the ANOVA object, apply the summary() to the ANOVA
object from Step 1.

# Step 2: Look at the summary of the anova object
summary(cleaner.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## cleaner 2 6057 3028 5.29 0.0053 **
## Residuals 597 341511 572
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The main result from our table is that we have a significant effect of cleaner on cleaning time (F(2, 597) =



230 CHAPTER 14. ANOVA

5.29, p = 0.005. However, the ANOVA table does not tell us which levels of the independent variable differ.
In other words, we don’t know which cleaner is better than which. To answer this, we need to conduct a

post-hoc test.

If you’ve found a significant effect of a factor, you can then do post-hoc tests to test the difference between
each all pairs of levels of the independent variable. There are many types of pairwise comparisons that
make different assumptions. To learn more about the logic behind different post-hoc tests, check out the

Wikipedia page here: https://en.wikipedia.org/wiki/Post_hoc_analysis. One of the most common
post-hoc tests for standard ANOVAs is the Tukey Honestly Significant Difference (HSD) test. To see

additional information about the Tukey HSD test, check out the Wikipedia page here:
https://en.wikipedia.org/wiki/Tukey’s_range_test To do an HSD test, apply the TukeyHSD() function to

your ANOVA object as follows:
# Step 3: Conduct post-hoc tests
TukeyHSD(cleaner.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = time ~ cleaner, data = poopdeck)
##
## $cleaner
## diff lwr upr p adj
## b-a -0.42 -6 5.2 0.98
## c-a -6.94 -13 -1.3 0.01
## c-b -6.52 -12 -0.9 0.02

This table shows us pair-wise differences between each group pair. The diff column shows us the mean
differences between groups (which thankfully are identical to what we found in the summary of the

regression object before), a confidence interval for the difference, and a p-value testing the null hypothesis
that the group differences are not different.

I almost always find it helpful to combine an ANOVA summary table with a regression summary table.
Because ANOVA is just a special case of regression (where all the independent variables are factors), you’ll
get the same results with a regression object as you will with an ANOVA object. However, the format of

the results are different and frequently easier to interpret.

To create a regression object, use the lm() function. Your inputs to this function will be identical to your
inputs to the aov() function

# Step 4: Create a regression object
cleaner.lm <- lm(formula = time ~ cleaner,

data = poopdeck)

# Show summary
summary(cleaner.lm)
##
## Call:
## lm(formula = time ~ cleaner, data = poopdeck)
##
## Residuals:
## Min 1Q Median 3Q Max
## -63.02 -16.60 -1.05 16.92 71.92
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 66.02 1.69 39.04 <2e-16 ***
## cleanerb -0.42 2.39 -0.18 0.8607

https://en.wikipedia.org/wiki/Post_hoc_analysis
https://en.wikipedia.org/wiki/Tukey's_range_test
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## cleanerc -6.94 2.39 -2.90 0.0038 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24 on 597 degrees of freedom
## Multiple R-squared: 0.0174, Adjusted R-squared: 0.0141
## F-statistic: 5.29 on 2 and 597 DF, p-value: 0.00526

As you can see, the regression table does not give us tests for each variable like the ANOVA table does.
Instead, it tells us how different each level of an independent variable is from a default value. You can tell
which value of an independent variable is the default variable just by seeing which value is missing from the

table. In this case, I don’t see a coefficient for cleaner a, so that must be the default value.

The intercept in the table tells us the mean of the default value. In this case, the mean time of cleaner a
was 66.02. The coefficients for the other levels tell us that cleaner b is, on average 0.42 minutes faster than
cleaner a, and cleaner c is on average 6.94 minutes faster than cleaner a. Not surprisingly, these are the

same differences we saw in the Tukey HSD test!

14.4 Ex: Two-way ANOVA

To conduct a two-way ANOVA or a Menage a trois NOVA, just include additional independent variables in
the regression model formula with the + sign. That’s it. All the steps are the same. Let’s conduct a

two-way ANOVA with both cleaner and type as independent variables. To do this, we’ll set formula =
time ~ cleaner + type.

# Step 1: Create ANOVA object with aov()
cleaner.type.aov <- aov(formula = time ~ cleaner + type,

data = poopdeck)

# Step 2: Get ANOVA table with summary()
summary(cleaner.type.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## cleaner 2 6057 3028 6.94 0.001 **
## type 1 81620 81620 187.18 <2e-16 ***
## Residuals 596 259891 436
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It looks like we found significant effects of both independent variables.
# Step 3: Conduct post-hoc tests
TukeyHSD(cleaner.type.aov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = time ~ cleaner + type, data = poopdeck)
##
## $cleaner
## diff lwr upr p adj
## b-a -0.42 -5.3 4.5 0.98
## c-a -6.94 -11.8 -2.0 0.00
## c-b -6.52 -11.4 -1.6 0.01
##
## $type
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## diff lwr upr p adj
## shark-parrot 23 20 27 0

The only non-significant group difference we found is between cleaner b and cleaner a. All other
comparisons were significant.

# Step 4: Look at regression coefficients
cleaner.type.lm <- lm(formula = time ~ cleaner + type,

data = poopdeck)

summary(cleaner.type.lm)
##
## Call:
## lm(formula = time ~ cleaner + type, data = poopdeck)
##
## Residuals:
## Min 1Q Median 3Q Max
## -59.74 -13.79 -0.68 13.58 83.58
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.36 1.71 31.88 < 2e-16 ***
## cleanerb -0.42 2.09 -0.20 0.84067
## cleanerc -6.94 2.09 -3.32 0.00094 ***
## typeshark 23.33 1.71 13.68 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21 on 596 degrees of freedom
## Multiple R-squared: 0.252, Adjusted R-squared: 0.248
## F-statistic: 67 on 3 and 596 DF, p-value: <2e-16

Now we need to interpret the results in respect to two default values (here, cleaner = a and type = parrot).
The intercept means that the average time for cleaner a on parrot poop was 54.36 minutes. Additionally,

the average time to clean shark poop was 23.33 minutes slower than when cleaning parrot poop.

14.4.1 ANOVA with interactions

Interactions between variables test whether or not the effect of one variable depends on another variable.
For example, we could use an interaction to answer the question: Does the effect of cleaners depend on the

type of poop they are used to clean? To include interaction terms in an ANOVA, just use an asterix (*)
instead of the plus (+) between the terms in your formula. Note that when you include an interaction term

in a regression object, R will automatically include the main effects as well/

Let’s repeat our previous ANOVA with two independent variables, but now we’ll include the interaction
between cleaner and type. To do this, we’ll set the formula to time ~ cleaner * type.

# Step 1: Create ANOVA object with interactions
cleaner.type.int.aov <- aov(formula = time ~ cleaner * type,

data = poopdeck)

# Step 2: Look at summary table
summary(cleaner.type.int.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## cleaner 2 6057 3028 7.82 0.00044 ***
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## type 1 81620 81620 210.86 < 2e-16 ***
## cleaner:type 2 29968 14984 38.71 < 2e-16 ***
## Residuals 594 229923 387
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Looks like we did indeed find a significant interaction between cleaner and type. In other words, the
effectiveness of a cleaner depends on the type of poop it’s being applied to. This makes sense given our plot

of the data at the beginning of the chapter.

To understand the nature of the difference, we’ll look at the regression coefficients from a regression object:
# Step 4: Calculate regression coefficients
cleaner.type.int.lm <- lm(formula = time ~ cleaner * type,

data = poopdeck)

summary(cleaner.type.int.lm)
##
## Call:
## lm(formula = time ~ cleaner * type, data = poopdeck)
##
## Residuals:
## Min 1Q Median 3Q Max
## -54.28 -12.83 -0.08 12.29 74.87
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.76 1.97 23.26 < 2e-16 ***
## cleanerb 8.06 2.78 2.90 0.00391 **
## cleanerc 10.37 2.78 3.73 0.00021 ***
## typeshark 40.52 2.78 14.56 < 2e-16 ***
## cleanerb:typeshark -16.96 3.93 -4.31 1.9e-05 ***
## cleanerc:typeshark -34.62 3.93 -8.80 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20 on 594 degrees of freedom
## Multiple R-squared: 0.338, Adjusted R-squared: 0.333
## F-statistic: 60.8 on 5 and 594 DF, p-value: <2e-16

Again, to interpret this table, we first need to know what the default values are. We can tell this from the
coefficients that are ‘missing’ from the table. Because I don’t see terms for cleanera or typeparrot, this
means that cleaner = "a" and type = "parrot" are the defaults. Again, we can interpret the coefficients
as differences between a level and the default. It looks like for parrot poop, cleaners b and c both take
more time than cleaner a (the default). Additionally, shark poop tends to take much longer than parrot

poop to clean (the estimate for typeshark is positive).

The interaction terms tell us how the effect of cleaners changes when one is cleaning shark poop. The
negative estimate (-16.96) for cleanerb:typeshark means that cleaner b is, on average 16.96 minutes

faster when cleaning shark poop compared to parrot poop. Because the previous estimate for cleaner b
(for parrot poop) was just 8.06, this suggests that cleaner b is slower than cleaner a for parrot poop, but
faster than cleaner a for shark poop. Same thing for cleaner c which simply has stronger effects in both

directions.
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14.5 Type I, Type II, and Type III ANOVAs

It turns out that there is not just one way to calculate ANOVAs. In fact, there are three different types -
called, Type 1, 2, and 3 (or Type I, II and III). These types differ in how they calculate variability
(specifically the sums of of squares). If your data is relatively balanced, meaning that there are

relatively equal numbers of observations in each group, then all three types will give you the same answer.
However, if your data are unbalanced, meaning that some groups of data have many more observations

than others, then you need to use Type II (2) or Type III (3).

The standard aov() function in base-R uses Type I sums of squares. Therefore, it is only appropriate when
your data are balanced. If your data are unbalanced, you should conduct an ANOVA with Type II or Type

III sums of squares. To do this, you can use the Anova() function in the car package. The Anova()
function has an argument called type that allows you to specify the type of ANOVA you want to calculate.

In the next code chunk, I’ll calculate 3 separate ANOVAs from the poopdeck data using the three different
types. First, I’ll create a regression object with lm(). As you’ll see, the Anova() function requires you to
enter a regression object as the main argument, and not a formula and dataset. That is, you need to first
create a regression object from the data with lm() (or glm()), and then enter that object into the Anova()

function. You can also do the same thing with the standard aov() function‘.
# Step 1: Calculate regression object with lm()
time.lm <- lm(formula = time ~ type + cleaner,

data = poopdeck)

Now that I’ve created the regression object time.lm, I can calculate the three different types of ANOVAs
by entering the object as the main argument to either aov() for a Type I ANOVA, or Anova() in the car

package for a Type II or Type III ANOVA:
# Type I ANOVA - aov()
time.I.aov <- aov(time.lm)

# Type II ANOVA - Anova(type = 2)
time.II.aov <- car::Anova(time.lm, type = 2)

# Type III ANOVA - Anova(type = 3)
time.III.aov <- car::Anova(time.lm, type = 3)

As it happens, the data in the poopdeck dataframe are perfectly balanced (so we’ll get exactly the same
result for each ANOVA type. However, if they were not balanced, then we should not use the Type I

ANOVA calculated with the aov() function.

To see if your data are balanced, you can use the table() function:
# Are observations in the poopdeck data balanced?
with(poopdeck,

table(cleaner, type))
## type
## cleaner parrot shark
## a 100 100
## b 100 100
## c 100 100

As you can see, in the poopdeck data, the observations are perfectly balanced, so it doesn’t matter which
type of ANOVA we use to analyse the data.

For more detail on the different types, check out
https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/.

https://mcfromnz.wordpress.com/2011/03/02/anova-type-iiiiii-ss-explained/
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14.6 Getting additional information from ANOVA objects

You can get a lot of interesting information from ANOVA objects. To see everything that’s stored in one,
run the names() command on an ANOVA object. For example, here’s what’s in our last ANOVA object:

# Show me what's in my aov object
names(cleaner.type.int.aov)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "contrasts" "xlevels" "call" "terms"
## [13] "model"

For example, the "fitted.values" contains the model fits for the dependent variable (time) for every
observation in our dataset. We can add these fits back to the dataset with the $ operator and assignment.
For example, let’s get the model fitted values from both the interaction model (cleaner.type.aov) and the

non-interaction model (cleaner.type.int.aov) and assign them to new columns in the dataframe:
# Add the fits for the interaction model to the dataframe as int.fit

poopdeck$int.fit <- cleaner.type.int.aov$fitted.values

# Add the fits for the main effects model to the dataframe as me.fit

poopdeck$me.fit <- cleaner.type.aov$fitted.values

Now let’s look at the first few rows in the table to see the fits for the first few observations.
head(poopdeck)
## day cleaner type time int.fit me.fit
## 1 1 a parrot 47 46 54
## 2 1 b parrot 55 54 54
## 3 1 c parrot 64 56 47
## 4 1 a shark 101 86 78
## 5 1 b shark 76 77 77
## 6 1 c shark 63 62 71

You can use these fits to see how well (or poorly) the model(s) were able to fit the data. For example, we
can calculate how far each model’s fits were from the true data as follows:

# How far were the interaction model fits from the data on average?

mean(abs(poopdeck$int.fit - poopdeck$time))
## [1] 15

# How far were the main effect model fits from the data on average?

mean(abs(poopdeck$me.fit - poopdeck$time))
## [1] 17

As you can see, the interaction model was off from the data by 15.35 minutes on average, while the main
effects model was off from the data by 16.54 on average. This is not surprising as the interaction model is
more complex than the main effects only model. However, just because the interaction model is better at

fitting the data doesn’t necessarily mean that the interaction is either meaningful or reliable.
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14.7 Repeated measures ANOVA using the lme4 package

If you are conducting an analyses where you’re repeating measurements over one or more third variables,
like giving the same participant different tests, you should do a mixed-effects regression analysis. To do
this, you should use the lmer function in the lme4 package. For example, in our poopdeck data, we have
repeated measurements for days. That is, on each day, we had 6 measurements. Now, it’s possible that the

overall cleaning times differed depending on the day. We can account for this by including random
intercepts for day by adding the (1|day) term to the formula specification. For more tips on mixed-effects

analyses, check out this great tutorial by Bodo Winter at
http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf.

# install.packages(lme4) # If you don't have the package already
library(lme4)

# Calculate a mixed-effects regression on time with
# Two fixed factors (cleaner and type)
# And one repeated measure (day)

my.mod <- lmer(formula = time ~ cleaner + type + (1|day),
data = poopdeck)

14.8 Test your R might!

For the following questions, use the pirates dataframe in the yarrr package

1. Is there a significant relationship between a pirate’s favorite pixar movie and the number of tattoos
(s)he has? Conduct an appropriate ANOVA with fav.pixar as the independent variable, and tattoos
as the dependent variable. If there is a significant relationship, conduct a post-hoc test to determine
which levels of the independent variable(s) differ.

2. Is there a significant relationship between a pirate’s favorite pirate and how many tattoos (s)he has?
Conduct an appropriate ANOVA with favorite.pirate as the independent variable, and tattoos
as the dependent variable. If there is a significant relationship, conduct a post-hoc test to determine
which levels of the independent variable(s) differ.

3. Now, repeat your analysis from the previous two questions, but include both independent variables
fav.pixar and favorite.pirate in the ANOVA. Do your conclusions differ when you include both
variables?

4. Finally, test if there is an interaction between fav.pixar and favorite.pirate on number of tattoos.

http://www.bodowinter.com/tutorial/bw_LME_tutorial2.pdf
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Regression

Pirates like diamonds. Who doesn’t?! But as much as pirates love diamonds, they hate getting ripped off.
For this reason, a pirate needs to know how to accurately assess the value of a diamond. For example, how

much should a pirate pay for a diamond with a weight of 2.0 grams, a clarity value of 1.0, and a color
gradient of 4 out of 10? To answer this, we’d like to know how the attributes of diamonds (e.g.; weight,

clarity, color) relate to its value. We can get these values using linear regression.

15.1 The Linear Model

The linear model is easily the most famous and widely used model in all of statistics. Why? Because it can
apply to so many interesting research questions where you are trying to predict a continuous variable of
interest (the response or dependent variable) on the basis of one or more other variables (the predictor or

independent variables).

The linear model takes the following form, where the x values represent the predictors, while the beta
values represent weights.

y = β0 + β1x1 + β2x2 + ...βnxn

For example, we could use a regression model to understand how the value of a diamond relates to two
independent variables: its weight and clarity. In the model, we could define the value of a diamond as

βweight × weight + βclarity × clarity. Where βweight indicates how much a diamond’s value changes as a
function of its weight, and βclarity defines how much a diamond’s value change as a function of its clarity.

15.2 Linear regression with lm()

Argument Description
formula A formula in the form y ~ x1 + x2 + ... where y is the dependent

variable, and x1, x2, … are the independent variables. If you want to
include all columns (excluding y) as independent variables, just enter y
~ .

data The dataframe containing the columns specified in the formula.

To estimate the beta weights of a linear model in R, we use the lm() function. The function has three key
arguments: formula, and data

237
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Figure 15.1: Insert funny caption here.
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15.2.1 Estimating the value of diamonds with lm()

We’ll start with a simple example using a dataset in the yarrr package called diamonds. The dataset
includes data on 150 diamonds sold at an auction. Here are the first few rows of the dataset:

library(yarrr)
head(diamonds)
## weight clarity color value value.lm weight.c clarity.c value.g190
## 1 9.3 0.88 4 182 186 -0.55 -0.12 FALSE
## 2 11.1 1.05 5 191 193 1.20 0.05 TRUE
## 3 8.7 0.85 6 176 183 -1.25 -0.15 FALSE
## 4 10.4 1.15 5 195 194 0.53 0.15 TRUE
## 5 10.6 0.92 5 182 189 0.72 -0.08 FALSE
## 6 12.3 0.44 4 183 183 2.45 -0.56 FALSE
## pred.g190
## 1 0.163
## 2 0.821
## 3 0.030
## 4 0.846
## 5 0.445
## 6 0.087

Our goal is to come up with a linear model we can use to estimate the value of each diamond (DV =
value) as a linear combination of three independent variables: its weight, clarity, and color. The linear

model will estimate each diamond’s value using the following equation:

βInt + βweight × weight + βclarity × clarity + βcolor × color

where βweight is the increase in value for each increase of 1 in weight, βclarity is the increase in value for
each increase of 1 in clarity (etc.). Finally, βInt is the baseline value of a diamond with a value of 0 in all

independent variables.

To estimate each of the 4 weights, we’ll use lm(). Because value is the dependent variable, we’ll specify
the formula as formula = value ~ weight + clarity + color. We’ll assign the result of the function to

a new object called diamonds.lm:
# Create a linear model of diamond values
# DV = value, IVs = weight, clarity, color

diamonds.lm <- lm(formula = value ~ weight + clarity + color,
data = diamonds)

To see the results of the regression analysis, including estimates for each of the beta values, we’ll use the
summary() function:

# Print summary statistics from diamond model
summary(diamonds.lm)
##
## Call:
## lm(formula = value ~ weight + clarity + color, data = diamonds)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.405 -3.547 -0.113 3.255 11.046
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 148.335 3.625 40.92 <2e-16 ***
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Linear Model of Diamond Values

148.3 + 2.19 × xweight + 21.69 × xclarity + (− 0.46) × xcolor = Value

Βintercept Βweight Βclarity Βcolor

Figure 15.2: A linear model estimating the values of diamonds based on their weight, clarity, and color.

## weight 2.189 0.200 10.95 <2e-16 ***
## clarity 21.692 2.143 10.12 <2e-16 ***
## color -0.455 0.365 -1.25 0.21
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.7 on 146 degrees of freedom
## Multiple R-squared: 0.637, Adjusted R-squared: 0.63
## F-statistic: 85.5 on 3 and 146 DF, p-value: <2e-16

Here, we can see from the summary table that the model estimated βInt (the intercept), to be 148.34,
βweight to be 2.19, βclarity to be 21.69, and , βcolor to be -0.45. You can see the full linear model in Figure

15.2:

You can access lots of different aspects of the regression object. To see what’s inside, use names()
# Which components are in the regression object?
names(diamonds.lm)
## [1] "coefficients" "residuals" "effects" "rank"
## [5] "fitted.values" "assign" "qr" "df.residual"
## [9] "xlevels" "call" "terms" "model"

For example, to get the estimated coefficients from the model, just access the coefficients attribute:
# The coefficients in the diamond model
diamonds.lm$coefficients
## (Intercept) weight clarity color
## 148.3354 2.1894 21.6922 -0.4549

If you want to access the entire statistical summary table of the coefficients, you just need to access them
from the summary object:

# Coefficient statistics in the diamond model
summary(diamonds.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 148.3354 3.6253 40.917 7.009e-82
## weight 2.1894 0.2000 10.948 9.706e-21
## clarity 21.6922 2.1429 10.123 1.411e-18
## color -0.4549 0.3646 -1.248 2.141e-01
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15.2.2 Getting model fits with fitted.values

To see the fitted values from a regression object (the values of the dependent variable predicted by the
model), access the fitted.values attribute from a regression object with $fitted.values.

Here, I’ll add the fitted values from the diamond regression model as a new column in the diamonds
dataframe:

# Add the fitted values as a new column in the dataframe
diamonds$value.lm <- diamonds.lm$fitted.values

# Show the result
head(diamonds)
## weight clarity color value value.lm weight.c clarity.c value.g190
## 1 9.35 0.88 4 182.5 186.1 -0.5511 -0.1196 FALSE
## 2 11.10 1.05 5 191.2 193.1 1.1989 0.0504 TRUE
## 3 8.65 0.85 6 175.7 183.0 -1.2511 -0.1496 FALSE
## 4 10.43 1.15 5 195.2 193.8 0.5289 0.1504 TRUE
## 5 10.62 0.92 5 181.6 189.3 0.7189 -0.0796 FALSE
## 6 12.35 0.44 4 182.9 183.1 2.4489 -0.5596 FALSE
## pred.g190
## 1 0.16252
## 2 0.82130
## 3 0.03008
## 4 0.84559
## 5 0.44455
## 6 0.08688

According to the model, the first diamond, with a weight of 9.35, a clarity of 0.88, and a color of 4 should
have a value of 186.08. As we can see, this is not far off from the true value of 182.5.

You can use the fitted values from a regression object to plot the relationship between the true values and
the model fits. If the model does a good job in fitting the data, the data should fall on a diagonal line:

# Plot the relationship between true diamond values
# and linear model fitted values

plot(x = diamonds$value, # True values on x-axis
y = diamonds.lm$fitted.values, # fitted values on y-axis
xlab = "True Values",
ylab = "Model Fitted Values",
main = "Regression fits of diamond values")

abline(b = 1, a = 0) # Values should fall around this line!
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Table 15.2: 3 new diamonds

weight clarity color
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15.2.3 Using predict() to predict new data from a model

Once you have created a regression model with lm(), you can use it to easily predict results from new
datasets using the predict() function.

For example, let’s say I discovered 3 new diamonds with the following characteristics:

I’ll use the predict() function to predict the value of each of these diamonds using the regression model
diamond.lm that I created before. The two main arguments to predict() are object – the regression
object we’ve already defined), and newdata – the dataframe of new data. Warning! The dataframe that
you use in the newdata argument to predict() must have column names equal to the names of the

coefficients in the model. If the names are different, the predict() function won’t know which column of
data applies to which coefficient and will return an error.

# Create a dataframe of new diamond data
diamonds.new <- data.frame(weight = c(12, 6, 5),

clarity = c(1.3, 1, 1.5),
color = c(5, 2, 3))

# Predict the value of the new diamonds using
# the diamonds.lm regression model
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predict(object = diamonds.lm, # The regression model
newdata = diamonds.new) # dataframe of new data

## 1 2 3
## 200.5 182.3 190.5

This result tells us the the new diamonds are expected to have values of 200.5, 182.3, and 190.5
respectively according to our regression model.

15.2.4 Including interactions in models: y ~ x1 * x2

To include interaction terms in a regression model, just put an asterix (*) between the independent
variables. For example, to create a regression model on the diamonds data with an interaction term

between weight and clarity, we’d use the formula formula = value ~ weight * clarity:
# Create a regression model with interactions between
# IVS weight and clarity
diamonds.int.lm <- lm(formula = value ~ weight * clarity,

data = diamonds)

# Show summary statistics of model coefficients
summary(diamonds.int.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 157.4721 10.569 14.8987 4.170e-31
## weight 0.9787 1.070 0.9149 3.617e-01
## clarity 9.9245 10.485 0.9465 3.454e-01
## weight:clarity 1.2447 1.055 1.1797 2.401e-01

15.2.5 Center variables before computing interactions!

Hey what happened? Why are all the variables now non-significant? Does this mean that there is really no
relationship between weight and clarity on value after all? No. Recall from your second-year pirate
statistics class that when you include interaction terms in a model, you should always center the

independent variables first. Centering a variable means simply subtracting the mean of the variable from
all observations.

In the following code, I’ll repeat the previous regression, but first I’ll create new centered variables
weight.c and clarity.c, and then run the regression on the interaction between these centered variables:
# Create centered versions of weight and clarity
diamonds$weight.c <- diamonds$weight - mean(diamonds$weight)
diamonds$clarity.c <- diamonds$clarity - mean(diamonds$clarity)

# Create a regression model with interactions of centered variables
diamonds.int.lm <- lm(formula = value ~ weight.c * clarity.c,

data = diamonds)

# Print summary
summary(diamonds.int.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 189.402 0.3831 494.39 2.908e-237
## weight.c 2.223 0.1988 11.18 2.322e-21
## clarity.c 22.248 2.1338 10.43 2.272e-19
## weight.c:clarity.c 1.245 1.0551 1.18 2.401e-01
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Hey that looks much better! Now we see that the main effects are significant and the interaction is
non-significant.

15.2.6 Getting an ANOVA from a regression model with aov()

Once you’ve created a regression object with lm() or glm(), you can summarize the results in an ANOVA
table with aov():

# Create ANOVA object from regression
diamonds.aov <- aov(diamonds.lm)

# Print summary results
summary(diamonds.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## weight 1 3218 3218 147.40 <2e-16 ***
## clarity 1 2347 2347 107.53 <2e-16 ***
## color 1 34 34 1.56 0.21
## Residuals 146 3187 22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15.3 Comparing regression models with anova()

A good model not only needs to fit data well, it also needs to be parsimonious. That is, a good model
should be only be as complex as necessary to describe a dataset. If you are choosing between a very simple
model with 1 IV, and a very complex model with, say, 10 IVs, the very complex model needs to provide a
much better fit to the data in order to justify its increased complexity. If it can’t, then the more simpler

model should be preferred.

To compare the fits of two models, you can use the anova() function with the regression objects as two
separate arguments. The anova() function will take the model objects as arguments, and return an

ANOVA testing whether the more complex model is significantly better at capturing the data than the
simpler model. If the resulting p-value is sufficiently low (usually less than 0.05), we conclude that the

more complex model is significantly better than the simpler model, and thus favor the more complex model.
If the p-value is not sufficiently low (usually greater than 0.05), we should favor the simpler model.

Let’s do an example with the diamonds dataset. I’ll create three regression models that each predict a
diamond’s value. The models will differ in their complexity – that is, the number of independent variables

they use. diamonds.mod1 will be the simplest model with just one IV (weight), diamonds.mod2 will
include 2 IVs (weight and clarity) while diamonds.mod3 will include three IVs (weight, clarity, and color).
# model 1: 1 IV (only weight)
diamonds.mod1 <- lm(value ~ weight, data = diamonds)

# Model 2: 2 IVs (weight AND clarity)
diamonds.mod2 <- lm(value ~ weight + clarity, data = diamonds)

# Model 3: 3 IVs (weight AND clarity AND color)
diamonds.mod3 <- lm(value ~ weight + clarity + color, data = diamonds)

Now let’s use the anova() function to compare these models and see which one provides the best
parsimonious fit of the data. First, we’ll compare the two simplest models: model 1 with model 2. Because
these models differ in the use of the clarity IV (both models use weight), this ANVOA will test whether

or not including the clarity IV leads to a significant improvement over using just the weight IV:
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# Compare model 1 to model 2
anova(diamonds.mod1, diamonds.mod2)
## Analysis of Variance Table
##
## Model 1: value ~ weight
## Model 2: value ~ weight + clarity
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 148 5569
## 2 147 3221 1 2347 107 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As you can see, the result shows a Df of 1 (indicating that the more complex model has one additional
parameter), and a very small p-value (< .001). This means that adding the clarity IV to the model did

lead to a significantly improved fit over the model 1.

Next, let’s use anova() to compare model 2 and model 3. This will tell us whether adding color (on top
of weight and clarity) further improves the model:

# Compare model 2 to model 3
anova(diamonds.mod2, diamonds.mod3)
## Analysis of Variance Table
##
## Model 1: value ~ weight + clarity
## Model 2: value ~ weight + clarity + color
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 147 3221
## 2 146 3187 1 34 1.56 0.21

The result shows a non-significant result (p = 0.21). Thus, we should reject model 3 and stick with model 2
with only 2 IVs.

You don’t need to compare models that only differ in one IV – you can also compare models that differ in
multiple DVs. For example, here is a comparison of model 1 (with 1 IV) to model 3 (with 3 IVs):

# Compare model 1 to model 3
anova(diamonds.mod1, diamonds.mod3)
## Analysis of Variance Table
##
## Model 1: value ~ weight
## Model 2: value ~ weight + clarity + color
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 148 5569
## 2 146 3187 2 2381 54.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result shows that model 3 did indeed provide a significantly better fit to the data compared to model 1.
However, as we know from our previous analysis, model 3 is not significantly better than model 2.

15.4 Regression on non-Normal data with glm()
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Argument Description
formula, data,
subset

The same arguments as in lm()

family One of the following strings, indicating the link function for the general
linear model

Family name Description
"binomial" Binary logistic regression, useful when the response is either 0 or 1.
"gaussian" Standard linear regression. Using this family will give you the same

result as lm()
"Gamma" Gamma regression, useful for highly positively skewed data
"inverse.gaussian" Inverse-Gaussian regression, useful when the dv is strictly positive and

skewed to the right.
"poisson" Poisson regression, useful for count data. For example, “How many

parrots has a pirate owned over his/her lifetime¿‘

We can use standard regression with lm()when your dependent variable is Normally distributed (more or
less). When your dependent variable does not follow a nice bell-shaped Normal distribution, you need to
use the Generalized Linear Model (GLM). the GLM is a more general class of linear models that change
the distribution of your dependent variable. In other words, it allows you to use the linear model even

when your dependent variable isn’t a normal bell-shape. Here are 4 of the most common distributions you
can can model with glm():
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15.5 Logistic regression with glm(family = "binomial"

The most common non-normal regression analysis is logistic regression, where your dependent variable is
just 0s and 1. To do a logistic regression analysis with glm(), use the family = binomial argument.

Let’s run a logistic regression on the diamonds dataset. First, I’ll create a binary variable called
value.g190 indicating whether the value of a diamond is greater than 190 or not. Then, I’ll conduct a

logistic regression with our new binary variable as the dependent variable. We’ll set family = "binomial"
to tell glm() that the dependent variable is binary.

# Create a binary variable indicating whether or not
# a diamond's value is greater than 190
diamonds$value.g190 <- diamonds$value > 190

# Conduct a logistic regression on the new binary variable
diamond.glm <- glm(formula = value.g190 ~ weight + clarity + color,

data = diamonds,
family = binomial)
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Figure 15.3: The inverse logit function used in binary logistic regression to convert logits to probabilities.

Here are the resulting coefficients:
# Print coefficients from logistic regression
summary(diamond.glm)$coefficients
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -18.8009 3.4634 -5.428 5.686e-08
## weight 1.1251 0.1968 5.716 1.088e-08
## clarity 9.2910 1.9629 4.733 2.209e-06
## color -0.3836 0.2481 -1.547 1.220e-01

Just like with regular regression with lm(), we can get the fitted values from the model and put them back
into our dataset to see how well the model fit the data:

# Add logistic fitted values back to dataframe as
# new column pred.g190
diamonds$pred.g190 <- diamond.glm$fitted.values

# Look at the first few rows (of the named columns)
head(diamonds[c("weight", "clarity", "color", "value", "pred.g190")])
## weight clarity color value pred.g190
## 1 9.35 0.88 4 182.5 0.16252
## 2 11.10 1.05 5 191.2 0.82130
## 3 8.65 0.85 6 175.7 0.03008
## 4 10.43 1.15 5 195.2 0.84559
## 5 10.62 0.92 5 181.6 0.44455
## 6 12.35 0.44 4 182.9 0.08688

Looking at the first few observations, it looks like the probabilities match the data pretty well. For example,
the first diamond with a value of 182.5 had a fitted probability of just 0.16 of being valued greater than 190.
In contrast, the second diamond, which had a value of 191.2 had a much higher fitted probability of 0.82.

Just like we did with regular regression, you can use the predict() function along with the results of a
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glm() object to predict new data. Let’s use the diamond.glm object to predict the probability that the
new diamonds will have a value greater than 190:

# Predict the 'probability' that the 3 new diamonds
# will have a value greater than 190

predict(object = diamond.glm,
newdata = diamonds.new)

## 1 2 3
## 4.8605 -3.5265 -0.3898

What the heck, these don’t look like probabilities! True, they’re not. They are logit-transformed
probabilities. To turn them back into probabilities, we need to invert them by applying the inverse logit

function:
# Get logit predictions of new diamonds
logit.predictions <- predict(object = diamond.glm,

newdata = diamonds.new
)

# Apply inverse logit to transform to probabilities
# (See Equation in the margin)
prob.predictions <- 1 / (1 + exp(-logit.predictions))

# Print final predictions!
prob.predictions
## 1 2 3
## 0.99231 0.02857 0.40376

So, the model predicts that the probability that the three new diamonds will be valued over 190 is 99.23%,
2.86%, and 40.38% respectively.

15.5.1 Adding a regression line to a plot

You can easily add a regression line to a scatterplot. To do this, just put the regression object you created
with lm as the main argument to abline(). For example, the following code will create the scatterplot on
the right (Figure~??) showing the relationship between a diamond’s weight and its value including a red

regression line:
# Scatterplot of diamond weight and value
plot(x = diamonds$weight,

y = diamonds$value,
xlab = "Weight",
ylab = "Value",
main = "Adding a regression line with abline()"
)

# Calculate regression model
diamonds.lm <- lm(formula = value ~ weight,

data = diamonds)

# Add regression line
abline(diamonds.lm,

col = "red", lwd = 2)
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Figure 15.4: Adding a regression line to a scatterplot using abline()

15.5.2 Transforming skewed variables prior to standard regression

# The distribution of movie revenus is highly
# skewed.
hist(movies$revenue.all,

main = "Movie revenue\nBefore log-transformation")

If you have a highly skewed variable that you want to include in a regression analysis, you can do one of
two things. Option 1 is to use the general linear model glm() with an appropriate family (like family =
"gamma"). Option 2 is to do a standard regression analysis with lm(), but before doing so, transforming
the variable into something less skewed. For highly skewed data, the most common transformation is a

log-transformation.

For example, look at the distribution of movie revenues in the movies dataset in the margin Figure 15.5:

As you can see, these data don’t look Normally distributed at all. There are a few movies (like Avatar) that
just an obscene amount of money, and many movies that made much less. If we want to conduct a standard
regression analysis on these data, we need to create a new log-transformed version of the variable. In the
following code, I’ll create a new variable called revenue.all.log defined as the logarithm of revenue.all
# Create a new log-transformed version of movie revenue
movies$revenue.all.log <- log(movies$revenue.all)

In Figure 15.6 you can see a histogram of the new log-transformed variable. It’s still skewed, but not nearly
as badly as before, so I would be feel much better using this variable in a standard regression analysis with

lm().
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Figure 15.5: Distribution of movie revenues without a log-transformation

# Distribution of log-transformed
# revenue is much less skewed

hist(movies$revenue.all.log,
main = "Log-transformed Movie revenue")

15.6 Test your might! A ship auction

The following questions apply to the auction dataset in the yarrr package. This dataset contains
information about 1,000 ships sold at a pirate auction. Here’s how the first few rows of the dataframe

should look:
head(auction)
## cannons rooms age condition color style jbb price price.gt.3500
## 1 18 20 140 5 red classic 3976 3502 TRUE
## 2 21 21 93 5 red modern 3463 2955 FALSE
## 3 20 18 48 2 plum classic 3175 3281 FALSE
## 4 24 20 81 5 salmon classic 4463 4400 TRUE
## 5 20 21 93 2 red modern 2858 2177 FALSE
## 6 21 19 60 6 red classic 4420 3792 TRUE

1. The column jbb is the “Jack’s Blue Book” value of a ship. Create a regression object called
jbb.cannon.lm predicting the JBB value of ships based on the number of cannons it has. Based on
your result, how much value does each additional cannon bring to a ship?
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Figure 15.6: Distribution of log-transformed movie revenues. It’s still skewed, but not nearly as badly as
before.

2. Repeat your previous regression, but do two separate regressions: one on modern ships and one on
classic ships. Is there relationship between cannons and JBB the same for both types of ships?

3. Is there a significant interaction between a ship’s style and its age on its JBB value? If so, how do you
interpret the interaction?

4. Create a regression object called jbb.all.lm predicting the JBB value of ships based on cannons,
rooms, age, condition, color, and style. Which aspects of a ship significantly affect its JBB value?

5. Create a regression object called price.all.lm predicting the actual selling value of ships based on
cannons, rooms, age, condition, color, and style. Based on the results, does the JBB do a good job of
capturing the effect of each variable on a ship’s selling price?

6. Repeat your previous regression analysis, but instead of using the price as the dependent variable, use
the binary variable price.gt.3500 indicating whether or not the ship had a selling price greater than
3500. Call the new regression object price.all.blr. Make sure to use the appropriate regression
function!!

7. Using price.all.lm, predict the selling price of the 3 new ships below

cannons rooms age condition color style
12 34 43 7 black classic
8 26 54 3 black modern
32 65 100 5 red modern

8. Using price.all.blr, predict the probability that the three new ships will have a selling price greater
than 3500.



Chapter 16

Custom functions

16.1 Why would you want to write your own function?

Throughout this book, you have been using tons of functions either built into base-R – like mean(), hist(),
t.test(), or written by other people and saved in packages – like pirateplot() and apa() in the yarrr

package. However, because R is a complete programming language, you can easily write your own
functions that perform specific tasks you want.

For example, let’s say you think the standard histograms made with hist() are pretty boring. Instead,
you’d like to you’d like use a fancier version with a more modern design that also displays statistical

information. Now of course you know from an earlier chapter that you can customize plots in R any way
that you’d like by adding customer parameter values like col, bg (etc.). However, it would be a pain to
have to specify all of these custom parameters every time you want to create your custom histogram. To
accomplish this, you can write your own custom function called piratehist() that automatically includes

your custom specifications.

In the following code, I will define a new function called piratehist(). Just like the standard hist()
function,piratehist() will take a vector of data (plus optional arguments indicated by ...), create a light

gray histogram, and adds text to the top of the figure indicating the mean and 95% CI of the data.
# Create a function called piratehist
piratehist <- function(x, ...) {

# Create a customized histogram

Figure 16.1: Functions. They’re kind of a big deal.

253
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hist(x,
col = gray(.5, .2),
border = "white",
yaxt = "n",
ylab = "",
...)

# Calculate the conf interval
ci <- t.test(x)$conf.int

# Define and add top-text
top.text <- paste(
"Mean = ", round(mean(x), 2),
" (95% CI [", round(ci[1], 2),
", ", round(ci[2], 2),
"]), SD = ", round(sd(x), 2),
sep = "")

mtext(top.text, side = 3)
}

Now that I’ve defined the piratehist() function, let’s evaluate it on a vector of data!
# Create a pirate histogram!
piratehist(pirates$age,

xlab = "Age",
main = "Pirates' Ages")

Pirates' Ages

Age

10 20 30 40 50

Mean = 27.36 (95% CI [27, 27.72]), SD = 5.79

As you can see, the resulting plot has all the customisations I specified in the function. So now, anytime I
want to make a fancy pirate-y histogram, I can just use the piratehist() function rather than having to
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always write all the raw code from scratch.

Of course, functions are limited to creating plots…oh no. You can write a function to do anything that you
can program in R. Just think about a function as a container for R-code stored behind the scenes for you
to use without having to see (or write) the code again. Now, if there’s anything you like to do repeatedly in
R (like making multiple customized plots, you can define the code just once in a new function rather than
having to write it all again and again.Some of you reading this will quickly see how how writing your own

functions can save you tons of time. For those of you who haven’t…trust me, this is a big deal.

16.2 The structure of a custom function

A function is simply an object that (usually) takes some arguments, performs some action (executes some
R code), and then (usually) returns some output. This might sound complicated, but you’ve been using

functions pre-defined in R throughout this book. For example, the function mean() takes a numeric vector
as an argument, and then returns the arithmetic mean of that vector as a single scalar value.

Your custom functions will have the following 4 attributes:

1. Name: What is the name of your function? You can give it any valid object name. However, be careful
not to use names of existing functions or R might get confused.

2. Arguments: What are the inputs to the function? Does it need a vector of numeric data? Or some
text? You can specify as many inputs as you want.

3. Actions: What do you want the function to do with the inputs? Create a plot? Calculate a statistic?
Run a regression analysis? This is where you’ll write all the real R code behind the function.

4. Output: What do you want the code to return when it’s finished with the actions? Should it return a
scalar statistic? A vector of data? A dataframe?

Here’s how your function will look in R. When creating functions, you’ll use two new functions (Yes, you
use functions to create functions! Very Inception-y), called function() and return(). You’ll put the
function inputs as arguments to the function() function, and the output(s) as argument(s) to the

return() function.
# The basic structure of a function
NAME <- function(ARGUMENTS) {

ACTIONS

return(OUTPUT)

}

16.2.1 Creating my.mean()

Let’s create a custom functino called my.mean() that does the exact same thing as the mean() function in
R. This function will take a vector x as an argument, creates a new vector called output that is the mean
of all the elements of x (by summing all the values in x and dividing by the length of x), then return the

output object to the user.
# Create the function my.mean()
my.mean <- function(x) { # Single input called x

output <- sum(x) / length(x) # Calculate output
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return(output) # Return output to the user after running the function

}

Try running the code above. When you do, nothing obvious happens. However, R has now stored the new
function my.mean() in the current working directory for later use. To use the function, we can then just

call our function like any other function in R. Let’s call our new function on some data and make sure that
it gives us the same result as mean():

data <- c(3, 1, 6, 4, 2, 8, 4, 2)
my.mean(data)
## [1] 3.8
mean(data)
## [1] 3.8

As you can see, our new function my.mean() gave the same result as R’s built in mean() function!
Obviously, this was a bit of a waste of time as we simply recreated a built-in R function. But you get the

idea…

16.2.2 Specifying multiple inputs

You can create functions with as many inputs as you’d like (even 0!). Let’s do an example. We’ll create a
function called oh.god.how.much.did.i.spend that helps hungover pirates figure out how much gold they
spent after a long night of pirate debauchery. The function will have three inputs: grogg: the number of
mugs of grogg the pirate drank, port: the number of glasses of port the pirate drank, and crabjuice: the
number of shots of fermented crab juice the pirate drank. Based on this input, the function will calculate
how much gold the pirate spent. We’ll also assume that a mug of grogg costs 1, a glass of port costs 3, and

a shot of fermented crab juice costs 10.
oh.god.how.much.did.i.spend <- function(grogg,

port,
crabjuice) {

output <- grogg * 1 + port * 3 + crabjuice * 10

return(output)
}

Now let’s test our new function with a few different values for the inputs grogg, port, and crab juice. How
much gold did Tamara, who had had 10 mugs of grogg, 3 glasses of wine, and 0 shots of crab juice spend?
oh.god.how.much.did.i.spend(grogg = 10,

port = 3,
crabjuice = 0)

## [1] 19

Looks like Tamara spent 19 gold last night. Ok, now how about Cosima, who didn’t drink any grogg or
port, but went a bit nuts on the crab juice:

oh.god.how.much.did.i.spend(grogg = 0,
port = 0,
crabjuice = 7)

## [1] 70

Cosima’s taste for crab juice set her back 70 gold pieces.
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16.2.3 Including default values for arguments

When you create functions with many inputs, you’ll probably want to start adding default values. Default
values are input values which the function will use if the user does not specify their own. Most functions
that you’ve used so far have default values. For example, the hist() function will use default values for
inputs like main, xlab, (etc.) if you don’t specify them/ Including defaults can save the user a lot of time

because it keeps them from having to specify every possible input to a function.

To add a default value to a function input, just include = DEFAULT}after the input. For example, let’s add
a default value of 0 to each argument in the oh.god.how.much.did.i.spend function. By doing this, R

will set any inputs that the user does not specify to 0 – in other words, it will assume that if you don’t tell
it how many drinks of a certain type you had, then you must have had 0.

# Including default values for function arguments
oh.god.how.much.did.i.spend <- function(grogg = 0,

port = 0,
crabjuice = 0) {

output <- grogg * 1 + port * 3 + crabjuice * 10

return(output)
}

Let’s test the new version of our function with data from Hyejeong, who had 5 glasses of port but no grogg
or crab juice. Because 0 is the default, we can just ignore these arguments:

oh.god.how.much.did.i.spend(port = 5)
## [1] 15

Looks like Hyejeong only spent 15 by sticking with port.

16.3 Using if, then statements in functions

A good function is like a person who knows what to wear for each occasion – it should put on different
things depending on the occasion. In other words, rather than doing (i.e.; wearing) a tuxedo for every

event, a good dress() function needs to first make sure that the input was (event == "ball") rather than
(event == "jobinterview"). To selectively evaluate code based on criteria, R uses if-then statements

To run an if-then statement in R, we use the if() {} function. The function has two main elements, a
logical test in the parentheses, and conditional code in curly braces. The code in the curly braces is

conditional because it is only evaluated if the logical test contained in the parentheses is TRUE. If the logical
test is FALSE, R will completely ignore all of the conditional code.

Let’s put some simple if() {} statements in a new function called is.it.true(). The function will take
a single input x. If the input x is TRUE, the function will print one sentence. If the input x is FALSE, it will

return a different sentence:
is.it.true <- function(x) {

if(x == TRUE) {print("x was true!")}
if(x == FALSE) {print("x was false!")}

}

Let’s try evaluating the function on a few different inputs:
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is.it.true(TRUE)
## [1] "x was true!"
is.it.true(FALSE)
## [1] "x was false!"
is.it.true(10 > 0)
## [1] "x was true!"
is.it.true(10 < 0)
## [1] "x was false!"

Using if() statements in your functions can allow you to do some really neat things. Let’s create a
function called show.me() that takes a vector of data, and either creates a plot, tells the user some

statistics, or tells a joke! The function has two inputs: x – a vector of data, and what – a string value that
tells the function what to do with x. We’ll set the function up to accept three different values of what –
either "plot", which will plot the data, "stats", which will return basic statistics about the vector, or

"tellmeajoke", which will return a funny joke!
show.me <- function(x, what) {

if(what == "plot") {

hist(x, yaxt = "n", ylab = "", border = "white",
col = "skyblue", xlab = "",
main = "Ok! I hope you like the plot...")

}

if(what == "stats") {

print(paste("Yarr! The mean of this data be ",
round(mean(x), 2),

" and the standard deviation be ",
round(sd(x), 2),
sep = ""))

}

if(what == "tellmeajoke") {

print("I am a pirate, not your joke monkey.")

}
}

Let’s try the show.me() function with different arguments:
show.me(x = pirates$beard.length,

what = "plot")
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Ok! I hope you like the plot...

0 10 20 30 40

Looks good! Now let’s get the same function to tell us some statistics about the data by setting what =
"stats":

show.me(x = pirates$beard.length,
what = "stats")

## [1] "Yarr! The mean of this data be 10.38 and the standard deviation be 10.31"

Phew that was exhausting, I need to hear a funny joke. Let’s set what = "tellmeajoke":
show.me(what = "tellmeajoke")
## [1] "I am a pirate, not your joke monkey."

That wasn’t very funny.

16.4 A worked example: plot.advanced()

Let’s create our own advanced own custom plotting function called plot.advanced() that acts like the
normal plotting function, but has several additional arguments

1 add.mean: A logical value indicating whether or not to add vertical and horizontal lines at the mean
value of x and y. 2 add.regression: A logical value indicating whether or not to add a linear regression
line 3 p.threshold: A numeric scalar indicating the p.value threshold for determining significance 4

add.modeltext: A logical value indicating whether or not to include the regression equation as a sub-title
to the plot

This plotting code is a bit long, but it’s all stuff you’ve learned before.

plot.advanced <- function (x = rnorm(100),
y = rnorm(100),
add.mean = FALSE,
add.regression = FALSE,
p.threshold = .05,
add.modeltext = FALSE,
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... # Optional further arguments passed on to plot
) {

# Generate the plot with optional arguments
# like main, xlab, ylab, etc.
plot(x, y, ...)

# Add mean reference lines if add.mean is TRUE
if(add.mean == TRUE) {

abline(h = mean(y), lty = 2)
abline(v = mean(x), lty = 2)

}

# Add regression line if add.regression is TRUE
if(add.regression == TRUE) {

model <- lm(y ~ x) # Run regression

p.value <- anova(model)$"Pr(>F)"[1] # Get p-value

# Define line color from model p-value and threshold
if(p.value < p.threshold) {line.col <- "red"}
if(p.value >= p.threshold) {line.col <- "black"}

abline(lm(y ~ x), col = line.col, lwd = 2) # Add regression line

}

# Add regression equation text if add.modeltext is TRUE
if(add.modeltext == TRUE) {

# Run regression
model <- lm(y ~ x)

# Determine coefficients from model object
coefficients <- model$coefficients
a <- round(coefficients[1], 2)
b <- round(coefficients[2], 2)

# Create text
model.text <- paste("Regression Equation: ", a, " + ",

b, " * x", sep = "")

# Add text to top of plot
mtext(model.text, side = 3, line = .5, cex = .8)

}
}

Let’s try it out!
plot.advanced(x = pirates$age,

y = pirates$tchests,
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add.regression = TRUE,
add.modeltext = TRUE,
p.threshold = .05,
main = "plot.advanced()",
xlab = "Age", ylab = "Treasure Chests Found",
pch = 16,
col = gray(.2, .3))
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Regression Equation: 0.21 + 0.82 * x

16.4.1 Seeing function code

Because R is awesome, you can view the code underlying most functions by just evaluating the name of the
function (without any parentheses or arguments). For example, the yarrr package contains a function

called transparent() that converts standard colors into transparent colors. To see the code contained in
the function, just evaluate its name:

# Show me the code in the transparent() function
transparent
## function(orig.col = "red", trans.val = 1, maxColorValue = 255) {
##
## n.cols <- length(orig.col)
## orig.col <- col2rgb(orig.col)
##
## final.col <- rep(NA, n.cols)
##
## for(i in 1:n.cols) {
##
## final.col[i] <- rgb(orig.col[1, i], orig.col[2, i], orig.col[3, i],
## alpha = (1 - trans.val) * 255,
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## maxColorValue = maxColorValue)
##
## }
##
## return(final.col)
## }
## <bytecode: 0x10e7e4ae0>
## <environment: namespace:yarrr>

Once you know the code underlying a function, you can easily copy it and edit it to your own liking. Or
print it and put it above your bed. Totally up to you.

16.4.2 Using stop() to completely stop a function and print an error

By default, all the code in a function will be evaluated when it is executed. However, there may be cases
where there’s no point in evaluating some code and it’s best to stop everything and leave the function

altogether. For example, let’s say you have a function called do.stats() that has a single argument called
mat which is supposed to be a matrix. If the user accidentally enters a dataframe rather than a matrix, it
might be best to stop the function altogether rather than to waste time executing code. To tell a function

to stop running, use the stop() function.

If R ever executes a stop() function, it will automatically quit the function it’s currently evaluating, and
print an error message. You can define the exact error message you want by including a string as the main

argument.

For example, the following function do.stats will print an error message if the argument mat is not a
matrix.

do.stats <- function(mat) {

if(is.matrix(mat) == F) {stop("Argument was not a matrix!")}

# Only run if argument is a matrix!
print(paste("Thanks for giving me a matrix. The matrix has ", nrow(mat),
" rows and ", ncol(mat),
" columns. If you did not give me a matrix, the function would have stopped by now!",
sep = ""))

}

Let’s test it. First I’ll enter an argument that is definitely not a matrix:
do.stats(mat = "This is a string, not a matrix")

Now I’ll enter a valid matrix argument:
do.stats(mat = matrix(1:10, nrow = 2, ncol = 5))
## [1] "Thanks for giving me a matrix. The matrix has 2 rows and 5 columns. If you did not give me a matrix, the function would have stopped by now!"

16.4.3 Using vectors as arguments

You can use any kind of object as an argument to a function. For example, we could re-create the function
oh.god.how.much.did.i.spend by having a single vector object as the argument, rather than three

separate values. In this version, we’ll extract the values of a, b and c using indexing:
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oh.god.how.much.did.i.spend <- function(drinks.vec) {

grogg <- drinks.vec[1]
port <- drinks.vec[2]
crabjuice <- drinks.vec[3]

output <- grogg * 1 + port * 3 + crabjuice * 10

return(output)

}

To use this function, the pirate will enter the number of drinks she had as a single vector with length three
rather than as 3 separate scalars.

oh.god.how.much.did.i.spend(c(1, 5, 2))
## [1] 36

16.4.4 Storing and loading your functions to and from a function file with
source()

As you do more programming in R, you may find yourself writing several function that you’ll want to use
again and again in many different R scripts. It would be a bit of a pain to have to re-type your functions
every time you start a new R session, but thankfully you don’t need to do that. Instead, you can store all

your functions in one R file and then load that file into each R session.

I recommend that you put all of your custom R functions into a single R script with a name like
customfunctions.R. Mine is called Custom_Pirate_Functions.R. Once you’ve done this, you can load all

your functions into any R session by using the source() function. The source function takes a file
directory as an argument (the location of your custom function file) and then executes the R script into

your current session.

For example, on my computer my custom function file is stored at
Users/Nathaniel/Dropbox/Custom_Pirate_Functions.R. When I start a new R session, I load all of my

custom functions by running the following code:
# Evaluate all of the code in my custom function R script
source(file = "Users/Nathaniel/Dropbox/Custom_Pirate_Functions.R")

Once I’ve run this, I have access to all of my functions, I highly recommend that you do the same thing!

16.4.5 Testing functions

When you start writing more complex functions, with several inputs and lots of function code, you’ll need
to constantly test your function line-by-line to make sure it’s working properly. However, because the input
values are defined in the input definitions (which you won’t execute when testing the function), you can’t
actually test the code line-by-line until you’ve defined the input objects in some other way. To do this, I
recommend that you include temporary hard-coded values for the inputs at the beginning of the function

code.

For example, consider the following function called remove.outliers. The goal of this function is to take a
vector of data and remove any data points that are outliers. This function takes two inputs x and

outlier.def, where x is a vector of numerical data, and outlier.def is used to define what an outlier is:
if a data point is outlier.def standard deviations away from the mean, then it is defined as an outlier

and is removed from the data vector.
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In the following function definition, I’ve included two lines where I directly assign the function inputs to
certain values (in this case, I set x to be a vector with 100 values of 1, and one outlier value of 999, and
outlier.def to be 2). Now, if I want to test the function code line by line, I can uncomment these test

values, execute the code that assigns those test values to the input objects, then run the function code line
by line to make sure the rest of the code works.

remove.outliers <- function(x, outlier.def = 2) {

# Test values (only used to test the following code)
# x <- c(rep(1, 100), 999)
# outlier.def <- 2

is.outlier <- x > (mean(x) + outlier.def * sd(x)) |
x < (mean(x) - outlier.def * sd(x))

x.nooutliers <- x[is.outlier == FALSE]

return(x.nooutliers)

}

Trust me, when you start building large complex functions, hard-coding these test values will save you
many headaches. Just don’t forget to comment them out when you are done testing or the function will

always use those values!

16.4.6 Using ... as a wildcard argument

For some functions that you write, you may want the user to be able to specify inputs to functions within
your overall function. For example, if I create a custom function that includes the histogram function

hist() in R, I might also want the user to be able to specify optional inputs for the plot, like main, xlab,
ylab, etc. However, it would be a real pain in the pirate ass to have to include all possible plotting

parameters as inputs to our new function. Thankfully, we can take care of all of this by using the ...
notation as an input to the function. Note that the ... notation will only pass arguments on to functions
that are specifically written to allow for optional inputs. If you look at the help menu for hist(), you’ll see
that it does indeed allow for such option inputs passed on from other functions. The ... input tells R that

the user might add additional inputs that should be used later in the function.

Here’s a quick example, let’s create a function called hist.advanced() that plots a histogram with some
optional additional arguments passed on with ...

hist.advanced <- function(x, add.ci = TRUE, ...) {

hist(x, # Main Data
... # Here is where the additional arguments go
)

if(add.ci == TRUE) {

ci <- t.test(x)$conf.int # Get 95% CI
segments(ci[1], 0, ci[2], 0, lwd = 5, col = "red")

mtext(paste("95% CI of Mean = [", round(ci[1], 2), ",",
round(ci[2], 2), "]"), side = 3, line = 0)

}
}
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Now, let’s test our function with the optional inputs main, xlab, and col. These arguments will be passed
down to the hist() function within hist.advanced(). Here is the result:

hist.advanced(x = rnorm(100), add.ci = TRUE,
main = "Treasure Chests found",
xlab = "Number of Chests",
col = "lightblue")
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As you can see, R has passed our optional plotting arguments down to the main hist() function in the
function code.

16.5 Test your R might!

1. Captain Jack is convinced that he can predict how much gold he will find on an island with the following
equation: (a * b) - c * 324 + log(a), where a is the area of the island in square meters, b is the
number of trees on the island, and c is how drunk he is on a scale of 1 to 10. Create a function called
Jacks.Equation that takes a, b, and c as arguments and returns Captain Jack’s predictions. Here is
an example of Jacks.Equation in action:

Jacks.Equation(a = 1000, b = 30, c = 7)
## [1] 27739

2. Write a function called standardize.me that takes a vector x as an argument, and returns a vector
that standardizes the values of x (standardization means subtracting the mean and dividing by the
standard deviation). Here is an example of standardize.me in action:

standardize.me(c(1, 2, 1, 100))
## [1] -0.51 -0.49 -0.51 1.50

3. Often times you will need to recode values of a dataset. For example, if you have a survey of age
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data, you may want to convert any crazy values (like anything below 0 or above 100) to NA. Write a
function called recode.numeric() with 3 arguments: x, lb, and ub. We’ll assume that x is a numeric
vector. The function should look at the values of x, convert any values below lb and above ub to NA,
and then return the resulting vector. Here is the function in action:

recode.numeric(x = c(5, 3, -5, 4, 3, 97),
lb = 0,
ub = 10)

## [1] 5 3 NA 4 3 NA

4. Create a function called plot.advanced that creates a scatterplot with the following arguments:

• add.regression, a logical value indicating whether or not to add a regression line to the plot.
• add.means, a logical value indicating whether or not to add a vertical line at the mean x value

and a horizontal line at mean y value.
• add.test, a logical value indicating whether or not to add text to the top margin of the plot

indicating the result of a correlation test between x and y. (Hint: use mtext() and paste() to
add the text)

Here is my version of plot.advanced() in action:
plot.advanced(x = diamonds$weight,

y = diamonds$value,
add.regression = TRUE,
add.means = TRUE,
add.test = TRUE)
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r = 0.61, t(148) = 9.25, p = 0



Chapter 17

Loops

One of the golden rules of programming is D.R.Y. “Don’t repeat yourself.” Why? Not because you can’t,
but because it’s almost certainly a waste of time. You see, while computers are still much, much worse than
humans at some tasks (like recognizing faces), they are much, much better than humans at doing a few key
things - like doing the same thing over…and over…and over. To tell R to do something over and over, we

use a loop. Loops are absolutely critical in conducting many analyses because they allow you to write code
once but evaluate it tens, hundreds, thousands, or millions of times without ever repeating yourself.

For example, imagine that you conduct a survey of 50 people containing 100 yes/no questions. Question 1
might be “Do you ever pick your nose?” and Question 2 might be “No seriously, do you ever pick your

nose?!” When you finish the survey, you could store the data as a dataframe with 50 rows (one row for each
person surveyed), and 100 columns representing all 100 questions. Now, because every question should

have a yes or no answer, the only values in the dataframe should be “yes” or “no” Unfortunately, as is the
case with all real world data collection, you will likely get some invalid responses – like “Maybe” or “What

be yee phone number?!”. For this reason, you’d like to go through all the data, and recode any invalid
response as NA (aka, missing). To do this sequentially, you’d have to write the following 100 lines of code…
# SLOW way to convert any values that aren't equal to "Y", or "N" to NA
survey.df$q.1[(survey.data$q1 %in% c("Y", "N")) == FALSE] <- NA
survey.df$q.2[(survey.data$q2 %in% c("Y", "N")) == FALSE] <- NA
# . ... Wait...I have to type this 98 more times?!
# .
# . ... My god this is boring...
# .
survey.df$q.100[(survey.data$q100 %in% c("Y", "N")) == FALSE] <- NA

Pretty brutal right? Imagine if you have a huge dataset with 1,000 columns, now you’re really doing a lot
of typing. Thankfully, with a loop you can take care of this in no time. Check out this following code

chunk which uses a loop to convert the data for all 100 columns in our survey dataframe.
# FAST way to convert values that aren't "Y", or "N" to NA

for(i in 1:100) { # Loop over all 100 columns

temp <- survey.df[, i] # Get data for ith column and save in a new temporary object temp

temp[(temp %in% c("Y", "N")) == FALSE] <- NA # Convert invalid values in temp to NA

survey.df[, i] <- temp # Assign temp back to survey.df!

267
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Figure 17.1: Loops in R can be fun. Just...you know...don’t screw it up.

} # Close loop!

Done. All 100 columns. Take a look at the code and see if you can understand the general idea. But if not,
no worries. By the end of this chapter, you’ll know all the basics of how to construct loops like this one.

17.1 What are loops?

A loop is, very simply, code that tells a program like R to repeat a certain chunk of code several times with
different values of a loop object that changes for every run of the loop. In R, the format of a for-loop is as

follows:
# General structure of a loop
for(loop.object in loop.vector) {

LOOP.CODE

}

As you can see, there are three key aspects of loops: The loop object, the loop vector, and the loop code:

1. Loop object: The object that will change for each iteration of the loop. This is usually a letter like
i, or an object with subscript like column.i or participant.i. You can use any object name that
you want for the index. While most people use single character object names, sometimes it’s more
transparent to use names that tell you something about the data the object represents. For example,
if you are doing a loop over participants in a study, you can call the index participant.i

2. Loop vector: A vector specifying all values that the loop object will take over the loop. You can specify
the values any way you’d like (as long as it’s a vector). If you’re running a loop over numbers, you’ll
probably want to use a:b or seq(). However, if you want to run a loop over a few specific values,
you can just use the c() function to type the values manually. For example, to run a loop over three
different pirate ships, you could set the index values as ship.i = c("Jolly Roger", "Black Pearl",
"Queen Anne's Revenge").
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3. Loop code: The code that will be executed for all values in the loop vector. You can write any R code
you’d like in the loop code - from plotting to analyses. R will run this code for all possible values of
the loop object specified in the loop vector.

17.1.1 Printing numbers from 1 to 100

Let’s do a really simple loop that prints the integers from 1 to 10. For this code, our loop object is i, our
loop vector is 1:10, and our loop code is print(i). You can verbally describe this loop as: For every

integer i between 1 and 10, print the integer i:
# Print the integers from 1 to 10
for(i in 1:10) {

print(i)

}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10

As you can see, the loop applied the loop code (which in this case was print(i)) to every value of the loop
object i specified in the loop vector, 1:10.

17.1.2 Adding the integers from 1 to 100

Let’s use a loop to add all the integers from 1 to 100. To do this, we’ll need to create an object called
current.sum that stores the latest sum of the numbers as we go through the loop. We’ll set the loop

object to i, the loop vector to 1:100, and the loop code to current.sum <- current.sum + i. Because
we want the starting sum to be 0, we’ll set the initial value of current.sum to 0. Here is the code:

# Loop to add integers from 1 to 100

current.sum <- 0 # The starting value of current.sum

for(i in 1:100) {

current.sum <- current.sum + i # Add i to current.sum

}

current.sum # Print the result!
## [1] 5050

Looks like we get an answer of 5050. To see if our loop gave us the correct answer, we can do the same
calculation without a loop by using a:b and the sum() function:



270 CHAPTER 17. LOOPS

Figure 17.2: Gauss. The guy was a total pirate. And totally would give us shit for using a loop to calculate
the sum of 1 to 100...

# Add the integers from 1 to 100 without a loop
sum(1:100)
## [1] 5050

As you can see, the sum(1:100) code gives us the same answer as the loop (and is much simpler).

There’s actually a funny story about how to quickly add integers (without a loop). According to the story,
a lazy teacher who wanted to take a nap decided that the best way to occupy his students was to ask them
to privately count all the integers from 1 to 100 at their desks. To his surprise, a young student approached
him after a few moments with the correct answer: 5050. The teacher suspected a cheat, but the student

didn’t count the numbers. Instead he realized that he could use the formula n(n+1) / 2. Don’t believe the
story? Check it out:

# Calculate the sum of integers from 1 to 100 using Gauss' method
n <- 100
n * (n + 1) / 2
## [1] 5050

This boy grew up to be Gauss, a super legit mathematician.

17.2 Creating multiple plots with a loop

One of the best uses of a loop is to create multiple graphs quickly and easily. Let’s use a loop to create 4
plots representing data from an exam containing 4 questions. The data are represented in a matrix with
100 rows (representing 100 different people), and 4 columns representing scores on the different questions.
The data are stored in the yarrr package in an object called examscores. Here are how the first few rows

of the data look
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# First few rows of the examscores data
head(examscores)
## a b c d
## 1 43 31 68 34
## 2 61 27 56 39
## 3 37 41 74 46
## 4 54 36 62 41
## 5 56 34 82 40
## 6 73 29 79 35

Now, we’ll loop over the columns and create a histogram of the data in each column. First, I’ll set up a 2 x
2 plotting space with par(mfrow()) (If you haven’t seen par(mfrow()) before, just know that it allows

you to put multiple plots side-by-side). Next, I’ll define the loop object as i, and the loop vector as the
integers from 1 to 4 with 1:4. In the loop code, I stored the data in column i as a new vector x. Finally, I

created a histogram of the object x!
par(mfrow = c(2, 2)) # Set up a 2 x 2 plotting space

# Create the loop.vector (all the columns)
loop.vector <- 1:4

for (i in loop.vector) { # Loop over loop.vector

# store data in column.i as x
x <- examscores[,i]

# Plot histogram of x
hist(x,

main = paste("Question", i),
xlab = "Scores",
xlim = c(0, 100))

}
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17.3 Updating a container object with a loop

For many loops, you may want to update values of a ‘container’ object with each iteration of a loop. We
can easily do this using indexing and assignment within a loop.

Let’s do an example with the examscores dataframe. We’ll use a loop to calculate how many students
failed each of the 4 exams – where failing is a score less than 50. To do this, we will start by creating an
NA vector called failure.percent. This will be a container object that we’ll update later with the loop.
# Create a container object of 4 NA values
failure.percent <- rep(NA, 4)

We will then use a loop that fills this object with the percentage of failures for each exam. The loop will go
over each column in examscores, calculates the percentage of scores less than 50 for that column, and
assigns the result to the ith value of failure.percent. For the loop, our loop object will be i and our

loop vector will be 1:4.
for(i in 1:4) { # Loop over columns 1 through 4

# Get the scores for the ith column
x <- examscores[,i]

# Calculate the percent of failures
failures.i <- mean(x < 50)

# Assign result to the ith value of failure.percent
failure.percent[i] <- failures.i

}
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Figure 17.3: This is what I got when I googled “funny container”.
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Now let’s look at the result.
failure.percent
## [1] 0.50 1.00 0.03 0.97

It looks like about 50% of the students failed exam 1, everyone (100%) failed exam 2, 3% failed exam 3,
and 97% percent failed exam 4. To calculate failure.percent without a loop, we’d do the following:

# Calculate failure percent without a loop
failure.percent <- rep(NA, 4)
failure.percent[1] <- mean(examscores[,1] < 50)
failure.percent[2] <- mean(examscores[,2] < 50)
failure.percent[3] <- mean(examscores[,3] < 50)
failure.percent[4] <- mean(examscores[,4] < 50)
failure.percent
## [1] 0.50 1.00 0.03 0.97

As you can see, the results are identical.

17.4 Loops over multiple indices with a design matrix

So far we’ve covered simple loops with a single index value - but how can you do loops over multiple
indices? You could do this by creating multiple nested loops. However, these are ugly and cumbersome.
Instead, I recommend that you use design matrices to reduce loops with multiple index values into a

single loop with just one index. Here’s how you do it:

Let’s say you want to calculate the mean, median, and standard deviation of some quantitative variable for
all combinations of two factors. For a concrete example, let’s say we wanted to calculate these summary

statistics on the age of pirates for all combinations of colleges and sex.

To do this, we’ll start by creating a design matrix. This matrix will have all combinations of our two
factors. To create this design matrix matrix, we’ll use the expand.grid() function. This function takes

several vectors as arguments, and returns a dataframe with all combinations of values of those vectors. For
our two factors college and sex, we’ll enter all the factor values we want. Additionally, we’ll add NA

columns for the three summary statistics we want to calculate
design.matrix <- expand.grid("college" = c("JSSFP", "CCCC"), # college factor

"sex" = c("male", "female"), # sex factor
"median.age" = NA, # NA columns for our future calculations
"mean.age" = NA, #...
"sd.age" = NA, #...
stringsAsFactors = FALSE)

Here’s how the design matrix looks:
design.matrix
## college sex median.age mean.age sd.age
## 1 JSSFP male NA NA NA
## 2 CCCC male NA NA NA
## 3 JSSFP female NA NA NA
## 4 CCCC female NA NA NA

As you can see, the design matrix contains all combinations of our factors in addition to three NA columns
for our future statistics. Now that we have the matrix, we can use a single loop where the index is the row
of the design.matrix, and the index values are all the rows in the design matrix. For each index value (that

is, for each row), we’ll get the value of each factor (college and sex) by indexing the current row of the
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design matrix. We’ll then subset the pirates dataframe with those factor values, calculate our summary
statistics, then assign them

for(row.i in 1:nrow(design.matrix)) {

# Get factor values for current row
college.i <- design.matrix$college[row.i]
sex.i <- design.matrix$sex[row.i]

# Subset pirates with current factor values
data.temp <- subset(pirates,

college == college.i & sex == sex.i)

# Calculate statistics
median.i <- median(data.temp$age)
mean.i <- mean(data.temp$age)
sd.i <- sd(data.temp$age)

# Assign statistics to row.i of design.matrix
design.matrix$median.age[row.i] <- median.i
design.matrix$mean.age[row.i] <- mean.i
design.matrix$sd.age[row.i] <- sd.i

}

Let’s look at the result to see if it worked!
design.matrix
## college sex median.age mean.age sd.age
## 1 JSSFP male 31 32 2.6
## 2 CCCC male 24 23 4.3
## 3 JSSFP female 33 34 3.5
## 4 CCCC female 26 26 3.4

Sweet! Our loop filled in the NA values with the statistics we wanted.

17.5 The list object

Lists and loops go hand in hand. The more you program with R, the more you’ll find yourself using loops.

Let’s say you are conducting a loop where the outcome of each index is a vector. However, the length of
each vector could change - one might have a length of 1 and one might have a length of 100. How can you

store each of these results in one object? Unfortunately, a vector, matrix or dataframe might not be
appropriate because their size is fixed. The solution to this problem is to use a list(). A list is a special
object in R that can store virtually anything. You can have a list that contains several vectors, matrices, or
dataframes of any size. If you want to get really Inception-y, you can even make lists of lists (of lists of

lists….).

To create a list in R, use the list() function. Let’s create a list that contains 3 vectors where each vector
is a random sample from a normal distribution. We’ll have the first element have 10 samples, the second

will have 5, and the third will have 15.
# Create a list with vectors of different lengths
number.list <- list(

"a" = rnorm(n = 10),
"b" = rnorm(n = 5),
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"c" = rnorm(n = 15))

number.list
## $a
## [1] -1.24 0.17 -1.19 -0.58 -1.23 0.92 1.62 -2.02 -0.25 0.92
##
## $b
## [1] -1.627 -1.103 -0.524 0.072 -2.351
##
## $c
## [1] -0.6539 0.4062 -0.6126 -0.3552 -1.0043 -0.4276 -2.3236 -0.6905
## [9] -0.4258 -1.0483 0.7000 0.7408 -0.0878 0.6970 -0.0016

To index an element in a list, use double brackets [[]] or $ if the list has names. For example, to get the first
element of a list named number.list, we’d use number.ls[[1]]:

# Give me the first element in number.list
number.list[[1]]
## [1] -1.24 0.17 -1.19 -0.58 -1.23 0.92 1.62 -2.02 -0.25 0.92

# Give me the element named b
number.list$b
## [1] -1.627 -1.103 -0.524 0.072 -2.351

Ok, now let’s use the list object within a loop. We’ll create a loop that generates 5 different samples from a
Normal distribution with mean 0 and standard deviation 1 and saves the results in a list called
samples.ls. The first element will have 1 sample, the second element will have 2 samples, etc.

First, we need to set up an empty list container object. To do this, use the vector function:
# Create an empty list with 5 elements
samples.ls <- vector("list", 5)

Now, let’s run the loop. For each run of the loop, we’ll generate i random samples and assign them to the
ith element in samples.ls

for(i in 1:5) {
samples.ls[[i]] <- rnorm(n = i, mean = 0, sd = 1)

}

Let’s look at the result:
samples.ls
## [[1]]
## [1] 0.062
##
## [[2]]
## [1] 0.96 2.06
##
## [[3]]
## [1] 0.490 0.946 -0.023
##
## [[4]]
## [1] 1.45 0.28 0.67 -0.97
##
## [[5]]
## [1] 0.614 -0.098 0.778 -0.209 0.288
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Looks like it worked. The first element has one sample, the second element has two samples and so on (you
might get different specific values than I did because the samples were drawn randomly!).

17.6 Test your R might!

1. Using a loop, create 4 histograms of the weights of chickens in the ChickWeight dataset, with a separate
histogram for time periods 0, 2, 4 and 6.

2. The following is a dataframe of survey data containing 5 questions I collected from 6 participants. The
response to each question should be an integer between 1 and 5. Obviously, we have some invalid
values in the dataframe. Let’s fix them. Using a loop, create a new dataframe called survey.clean
where all the invalid values (those that are not integers between 1 and 10) are set to NA.

survey <- data.frame("q1" = c(5, 3, 2, 7, 11, 5),
"q2" = c(4, 2, 2, 5, 5, 2),
"q3" = c(2, 1, 4, 2, 9, 10),
"q4" = c(2, 5, 2, 5, 4, 2),
"q5" = c(1, 4, -20, 2, 4, 2))

Here’s how your survey.clean dataframe should look:
# The cleaned survey data
survey.clean
## q1 q2 q3 q4 q5
## 1 5 4 2 2 1
## 2 3 2 1 5 4
## 3 2 2 4 2 NA
## 4 7 5 2 5 2
## 5 NA 5 9 4 4
## 6 5 2 10 2 2

3. Now, again using a loop, add a new column to the survey.clean dataframe called invalid.answers
that indicates, for each participant, how many invalid answers they gave (Note: You may wish to use
the is.na() function).

4. Standardizing a variable means subtracting the mean, and then dividing by the standard deviation.
Using a loop, create a new dataframe called survey.z that contains standardized versions of the
columns in the following survey.B dataframe.

survey.B <- data.frame("q1" = c(5, 3, 2, 7, 1, 9),
"q2" = c(4, 2, 2, 5, 1, 10),
"q3" = c(2, 1, 4, 2, 9, 10),
"q4" = c(10, 5, 2, 10, 4, 2),
"q5" = c(4, 4, 3, 2, 4, 2))

Here’s how your survey.B.z dataframe should look:
survey.B.z
## q1 q2 q3 q4 q5
## 1 0.16 0.00 -0.69 1.22 0.85
## 2 -0.49 -0.61 -0.94 -0.14 0.85
## 3 -0.81 -0.61 -0.17 -0.95 -0.17
## 4 0.81 0.30 -0.69 1.22 -1.19
## 5 -1.14 -0.91 1.12 -0.41 0.85
## 6 1.46 1.83 1.37 -0.95 -1.19
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Chapter 18

Solutions

18.1 Chapter 4: The Basics

2. Which (if any) of the following objects names is/are invalid?
thisone <- 1
THISONE <- 2
1This <- 3
this.one <- 3
This.1 <- 4
ThIS.....ON...E <- 5
This!One! <- 6 # only this one!
lkjasdfkjsdf <- 7

3. 2015 was a good year for pirate booty - your ship collected 100,000 gold coins. Create an object called
gold.in.2015 and assign the correct value to it.

gold.in.2015 <- 100800

4. Oops, during the last inspection we discovered that one of your pirates Skippy McGee hid 800 gold
coins in his underwear. Go ahead and add those gold coins to the object gold.in.2015. Next, create
an object called plank.list with the name of the pirate thief.

gold.in.2015 <- gold.in.2015 + 800
plank.list <- "Skippy McGee"

5. Look at the code below. What will R return after the third line? Make a prediction, then test the
code yourself.

a <- 10
a + 10
a # It will return 10 because we never re-assigned a!

18.2 Chapter 5: Scalers and vectors

1. Create the vector [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] in three ways: once using c(), once using a:b, and once
using seq().

279
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c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
## [1] 1 2 3 4 5 6 7 8 9 10

1:10
## [1] 1 2 3 4 5 6 7 8 9 10

seq(from = 1, to = 10, by = 1)
## [1] 1 2 3 4 5 6 7 8 9 10

2. Create the vector [2.1, 4.1, 6.1, 8.1] in two ways, once using c() and once using seq()

c(2.1, 6.1, 6.1, 8.1)
## [1] 2.1 6.1 6.1 8.1

seq(from = 2.1, to = 8.1, by = 2)
## [1] 2.1 4.1 6.1 8.1

3. Create the vector [0, 5, 10, 15] in 3 ways: using c(), seq() with a by argument, and seq() with a
length.out argument.

c(0, 5, 10, 15)
## [1] 0 5 10 15

seq(from = 0, to = 15, by = 5)
## [1] 0 5 10 15

seq(from = 0, to = 15, length.out = 4)
## [1] 0 5 10 15

4. Create the vector [101, 102, 103, 200, 205, 210, 1000, 1100, 1200] using a combination of the c() and
seq() functions

c(seq(from = 101, to = 103, by = 3),
seq(from = 200, to = 210, by = 5),
seq(from = 1000, to = 1200, by = 100))

## [1] 101 200 205 210 1000 1100 1200

5. A new batch of 100 pirates are boarding your ship and need new swords. You have 10 scimitars, 40
broadswords, and 50 cutlasses that you need to distribute evenly to the 100 pirates as they board.
Create a vector of length 100 where there is 1 scimitar, 4 broadswords, and 5 cutlasses in each group of
10. That is, in the first 10 elements there should be exactly 1 scimitar, 4 broadswords and 5 cutlasses.
The next 10 elements should also have the same number of each sword (and so on).

swords <- rep(c("scimitar", rep("broadswoard", 4), rep("cutlass", 5)), times = 100)
head(swords)
## [1] "scimitar" "broadswoard" "broadswoard" "broadswoard" "broadswoard"
## [6] "cutlass"

6. Create a vector that repeats the integers from 1 to 5, 10 times. That is [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, …].
The length of the vector should be 50!

rep(1:5, times = 10)
## [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
## [36] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

7. Now, create the same vector as before, but this time repeat 1, 10 times, then 2, 10 times, etc., That is
[1, 1, 1, …, 2, 2, 2, …, … 5, 5, 5]. The length of the vector should also be 50
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Table 18.1: Renata’s treasure haul when she was sober and when she was drunk

day sober drunk
Monday 2 0
Tuesday 0 0
Wednesday 3 1
Thursday 1 0
Friday 0 1
Saturday 3 2
Sunday 5 2

rep(1:5, each = 10)
## [1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4
## [36] 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5

8. Create a vector containing 50 samples from a Normal distribution with a population mean of 20 and
standard deviation of 2.

rnorm(n = 50, mean = 20, sd = 2)
## [1] 18 22 23 17 22 22 17 22 20 21 22 23 24 21 22 23 23 20 21 18 21 23 18
## [24] 20 17 19 19 20 22 23 20 18 18 21 21 19 22 23 24 20 19 17 19 24 16 21
## [47] 22 18 18 23

9. Create a vector containing 25 samples from a Uniform distribution with a lower bound of -100 and an
upper bound of -50.

runif(n = 25, min = -100, max = -50)
## [1] -65 -100 -53 -63 -92 -78 -75 -60 -76 -69 -77 -76 -73 -75
## [15] -53 -60 -59 -96 -78 -61 -90 -77 -72 -91 -70

18.3 Chapter 6: Vector Functions

1. Create a vector that shows the square root of the integers from 1 to 10.
(1:10) ^ .5
## [1] 1.0 1.4 1.7 2.0 2.2 2.4 2.6 2.8 3.0 3.2

#or

sqrt(1:10)
## [1] 1.0 1.4 1.7 2.0 2.2 2.4 2.6 2.8 3.0 3.2

2. Renata thinks that she finds more treasure when she’s had a mug of grogg than when she doesn’t. To
test this, she recorded how much treasure she found over 7 days without drinking any grogg (ie., sober),
and then did the same over 7 days while drinking grogg (ie., drunk). Here are her results:

How much treasure did Renata find on average when she was sober? What about when she was drunk?
sober <- c(2, 0, 3, 1, 0, 3, 5)
drunk <- c(0, 0, 1, 0, 1, 2, 2)

mean(sober)
## [1] 2
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mean(drunk)
## [1] 0.86

3. Using Renata’s data again, create a new vector called difference that shows how much more treasure
Renata found when she was drunk and when she was not. What was the mean, median, and standard
deviation of the difference?

difference <- sober - drunk

mean(difference)
## [1] 1.1
median(difference)
## [1] 1
sd(difference)
## [1] 1.3

4. There’s an old parable that goes something like this. A man does some work for a king and needs to
be paid. Because the man loves rice (who doesn’t?!), the man offers the king two different ways that
he can be paid. You can either pay me 100 kilograms of rice, or, you can pay me as follows: get a
chessboard and put one grain of rice in the top left square. Then put 2 grains of rice on the next square,
followed by 4 grains on the next, 8 grains on the next…and so on, where the amount of rice doubles
on each square, until you get to the last square. When you are finished, give me all the grains of rice
that would (in theory), fit on the chessboard. The king, sensing that the man was an idiot for making
such a stupid offer, immediately accepts the second option. He summons a chessboard, and begins
counting out grains of rice one by one… Assuming that there are 64 squares on a chessboard, calculate
how many grains of rice the main will receive. If one grain of rice weights 1/64000 kilograms, how
many kilograms of rice did he get? Hint: If you have trouble coming up with the answer, imagine how
many grains are on the first, second, third and fourth squares, then try to create the vector that shows
the number of grains on each square. Once you come up with that vector, you can easily calculate the
final answer with the sum() function.

# First, let's create a vector of the amount of rice on each square:
# It should be 1, 2, 4, 8, ...
rice <- 2 ^ (0:63)

# Here are the first few spaces
head(rice)
## [1] 1 2 4 8 16 32

# The result is just the sum!
rice.total <- sum(rice)
rice.total
## [1] 1.8e+19

# How much does that weigh? Each grain weights 1/6400 kilograms:
rice.kg <- sum(rice) * 1/6400
rice.kg
## [1] 2.9e+15

# That's 2,900,000,000,000,000 kilograms of rice. Let's keep going....
# A kg of rice is 1,300 calories

rice.cal <- rice.kg * 1300
rice.cal
## [1] 3.7e+18
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Table 18.2: Some of my favorite movies

movie year boxoffice genre time rating
Whatever Works 2009 35.0 Comedy 92 PG-13
It Follows 2015 15.0 Horror 97 R
Love and Mercy 2015 15.0 Drama 120 R
The Goonies 1985 62.0 Adventure 90 PG
Jiro Dreams of Sushi 2012 3.0 Documentary 81 G
There Will be Blood 2007 10.0 Drama 158 R
Moon 2009 321.0 Science Fiction 97 R
Spice World 1988 79.0 Comedy -84 PG-13
Serenity 2005 39.0 Science Fiction 119 PG-13
Finding Vivian Maier 2014 1.5 Documentary 84 Unrated

# How many people can that feed for a year?
# A person needs about 2,250 calories a day, or 2,250 * 365 per year

rice.people.year <- rice.cal / (2250 * 365)
rice.people.year
## [1] 4.6e+12

# So, that amount of rice could feed 4,600,000,000,000 for a year
# Assuming that the averge lifespan is 70 years, how many lifespans could this feed?

rice.people.life <- rice.people.year / 70
rice.people.life
## [1] 6.5e+10

# Ok...so it could feed 65,000,000,000 (65 billion) people over their lives

# Conclusion: King done screwed up.

18.4 Chapter 7: Indexing vectors with []

0. Create new data vectors for each column.
movie <- c("Whatever Works", "It Follows", "Love and Mercy",

"The Goonies", "Jiro Dreams of Sushi",
"There Will be Blood", "Moon",
"Spice World", "Serenity", "Finding Vivian Maier")

year <- c(2009, 2015, 2015, 1985, 2012, 2007, 2009, 1988, 2005, 2014)

boxoffice <- c(35, 15, 15, 62, 3, 10, 321, 79, 39, 1.5)

genre <- c("Comedy", "Horror", "Drama", "Adventure", "Documentary",
"Drama", "Science Fiction", "Comedy", "Science Fiction",
"Documentary")

time <- c(92, 97, 120, 90, 81, 158, 97, -84, 119, 84)



284 CHAPTER 18. SOLUTIONS

rating <- c("PG-13", "R", "R", "PG", "G", "R", "R",
"PG-13", "PG-13", "Unrated")

1. What is the name of the 10th movie in the list?
movie[10]
## [1] "Finding Vivian Maier"

2. What are the genres of the first 4 movies?
genre[1:4]
## [1] "Comedy" "Horror" "Drama" "Adventure"

3. Some joker put Spice World in the movie names – it should be “The Naked Gun” Please correct the
name.

movie[movie == "Spice World"] <- "The Naked Gun"

4. What were the names of the movies made before 1990?
movie[year < 1990]
## [1] "The Goonies" "The Naked Gun"

5. How many movies were Dramas? What percent of the 10 movies were Comedies?
sum(genre == "Drama")
## [1] 2

mean(genre == "Comedy")
## [1] 0.2

6. One of the values in the time vector is invalid. Convert any invalid values in this vector to NA. Then,
calculate the mean movie time

time[time < 0] <- NA

mean(time, na.rm = TRUE)
## [1] 104

7. What were the names of the Comedy movies? What were their boxoffice totals? (Two separate
questions)

movie[genre == "Comedy"]
## [1] "Whatever Works" "The Naked Gun"

boxoffice[genre == "Comedy"]
## [1] 35 79

8. What were the names of the movies that made less than $50 Million dollars AND were Comedies?
movie[boxoffice < 50 & genre == "Comedy"]
## [1] "Whatever Works"

9. What was the median boxoffice revenue of movies rated either G or PG?
median(boxoffice[rating %in% c("G", "PG")])
## [1] 32

# OR
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median(boxoffice[rating == "G" | rating == "PG"])
## [1] 32

10. What percent of the movies were either rated R OR were comedies?
mean(rating == "R" | genre == "Comedy")
## [1] 0.6

18.5 Chapter 8: Matrices and Dataframes

The following table shows the results of a survey of 10 pirates. In addition to some basic demographic
information, the survey asked each pirate “What is your favorite superhero?”” and “How many tattoos do

you have?””

Name Sex Age Superhero Tattoos
Astrid F 30 Batman 11
Lea F 25 Superman 15
Sarina F 25 Batman 12
Remon M 29 Spiderman 5
Letizia F 22 Batman 65
Babice F 22 Antman 3
Jonas M 35 Batman 9
Wendy F 19 Superman 13
Niveditha F 32 Maggott 900
Gioia F 21 Superman 0

1. Combine the data into a single dataframe. Complete all the following exercises from the dataframe!
piratesurvey <- data.frame(
name = c("Astrid", "Lea", "Sarina", "Remon", "Letizia", "Babice", "Jonas", "Wendy", "Niveditha", "Gioia"),
sex = c("F", "F", "F", "M", "F", "F", "M", "F", "F", "F"),
age = c(30, 25, 25, 29, 22, 22, 35, 19, 32, 21),
superhero = c("Batman", "Superman", "Batman", "Spiderman", "Batman",

"Antman", "Batman", "Superman", "Maggott", "Superman"),
tattoos = c(11, 15, 12, 5, 65, 3, 9, 13, 900, 0),
stringsAsFactors = FALSE

)

2. What is the median age of the 10 pirates?
median(piratesurvey$age)
## [1] 25

3. What was the mean age of female and male pirates separately?
mean(piratesurvey$age[piratesurvey$sex == "F"])
## [1] 24
mean(piratesurvey$age[piratesurvey$sex == "M"])
## [1] 32

## OR
with(piratesurvey,

mean(age[sex == "F"]))
## [1] 24
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with(piratesurvey,
mean(age[sex == "M"]))

## [1] 32

## OR

mean(subset(piratesurvey,
subset = sex == "F")$age)

## [1] 24

mean(subset(piratesurvey,
subset = sex == "M")$age)

## [1] 32

4. What was the most number of tattoos owned by a male pirate?
with(piratesurvey,

max(tattoos[sex == "M"]))
## [1] 9

# OR

max(subset(piratesurvey,
subset = sex == "M")$tattoos)

## [1] 9

5. What percent of pirates under the age of 32 were female?
with(piratesurvey,

mean(sex[age < 32] == "F"))
## [1] 0.88

6. What percent of female pirates are under the age of 32?
with(piratesurvey,

mean(sex[age < 32] == "F"))
## [1] 0.88

7. Add a new column to the dataframe called tattoos.per.year which shows how many tattoos each
pirate has for each year in their life.

piratesurvey$tattoos.per.year <- with(piratesurvey, tattoos / age)

8. Which pirate had the most number of tattoos per year?
piratesurvey$name[piratesurvey$tattoos.per.year == max(piratesurvey$tattoos.per.year)]
## [1] "Niveditha"

9. What are the names of the female pirates whose favorite piratesurvey is Superman?
piratesurvey$name[with(piratesurvey, sex == "F" & superhero == "Superman")]
## [1] "Lea" "Wendy" "Gioia"

10. What was the median number of tattoos of pirates over the age of 20 whose favorite piratesurvey is
Spiderman?

with(piratesurvey, (tattoos[age > 20 & superhero == "Spiderman"]))
## [1] 5
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18.6 Chapter 13: Hypothesis tests

1. Do male pirates have significantly longer beards than female pirates? Test this by conducting the
appropriate test on the relevant data in the pirates dataset.

beard.sex.htest <- t.test(formula = beard.length ~ sex,
subset = sex %in% c("male", "female"),
data = pirates)

beard.sex.htest
##
## Welch Two Sample t-test
##
## data: beard.length by sex
## t = -70, df = 500, p-value <2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -20 -18
## sample estimates:
## mean in group female mean in group male
## 0.4 19.4

apa(beard.sex.htest)
## [1] "mean difference = 19.02, t(499.82) = -70.89, p < 0.01 (2-tailed)"

Answer: Yes, men have significantly longer beards than women, mean difference = 19.02, t(499.82) =
-70.89, p < 0.01 (2-tailed)

2. Are pirates whose favorite pixar movie is Up more or less likely to wear an eye patch than those whose
favorite pixar movie is Inside Out? Test this by conducting the appropriate test on the relevant data
in the pirates dataset.

df <- subset(pirates, fav.pixar %in% c("Up", "Inside Out"))
pixar.ep.table <- table(df$fav.pixar, df$eyepatch)

pixar.ep.htest <- chisq.test(pixar.ep.table)
pixar.ep.htest
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: pixar.ep.table
## X-squared = 90, df = 1, p-value <2e-16

apa(pixar.ep.htest)
## [1] "X(1, N = 422) = 88.96, p < 0.01 (2-tailed)"

Answer: Yes, pirates whose favorite movie is Inside Out are much more likely to wear an eye patch than
those whose favorite Pixar movie is Up, X(1, N = 422) = 88.96, p < 0.01 (2-tailed)

3. Do longer movies have significantly higher budgets than shorter movies? Answer this question by
conducting the appropriate test in the movies dataset.

budget.time.htest <- cor.test(formula = ~ budget + time,
data = movies)

budget.time.htest
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##
## Pearson's product-moment correlation
##
## data: budget and time
## t = 10, df = 2000, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.24 0.32
## sample estimates:
## cor
## 0.28

apa(budget.time.htest)
## [1] "r = 0.28, t(2313) = 14.09, p < 0.01 (2-tailed)"

Answer: Yes, longer movies tend to have higher budgets than shorter movies, r = 0.28, t(2313) = 14.09, p
< 0.01 (2-tailed)

4. Do R rated movies earn significantly more money than PG-13 movies? Test this by conducting a the
appropriate test on the relevant data in the movies dataset.

revenue.rating.htest <- t.test(formula = revenue.all ~ rating,
subset = rating %in% c("R", "PG-13"),
data = movies)

revenue.rating.htest
##
## Welch Two Sample t-test
##
## data: revenue.all by rating
## t = 10, df = 2000, p-value <2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 56 82
## sample estimates:
## mean in group PG-13 mean in group R
## 148 80

apa(revenue.rating.htest)
## [1] "mean difference = -68.86, t(1779.2) = 10.67, p < 0.01 (2-tailed)"

Answer: No, R Rated movies do not earn significantly more than PG-13 movies. In fact, PG-13 movies
earn significantly more than R rated movies.

5. Are certain movie genres significantly more common than others in the movies dataset?
genre.table <- table(movies$genre)
genre.htest <- chisq.test(genre.table)

genre.htest
##
## Chi-squared test for given probabilities
##
## data: genre.table
## X-squared = 6000, df = 10, p-value <2e-16
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apa(genre.htest)
## [1] "X(13, N = 4682) = 6408.91, p < 0.01 (2-tailed)"

Answer: Yes, some movie genres are more common than others, X(13, N = 4682) = 6408.91, p < 0.01
(2-tailed)

6. Do sequels and non-sequels differ in their ratings?
genre.sequel.table <- table(movies$genre, movies$sequel)

genre.sequel.htest <- chisq.test(genre.sequel.table)
## Warning in chisq.test(genre.sequel.table): Chi-squared approximation may be
## incorrect

apa(genre.sequel.htest)
## [1] "X(13, N = 4669) = 387.17, p < 0.01 (2-tailed)"

Answer: Yes, sequels are more likely in some genres than others.

Note: The error “Warning in chisq.test” we get in this code is due to the fact that some cells have no
entries. This can make the test statistic unreliable. You can correct it by adding a value of 20 to every

element in the table as follows:
genre.sequel.table <- table(movies$genre, movies$sequel)

# Add 20 to each cell to correct for empty cells
genre.sequel.table <- genre.sequel.table + 20

# Here is the result
genre.sequel.table
##
## 0 1
## Action 550 178
## Adventure 384 141
## Black Comedy 54 20
## Comedy 1078 172
## Concert/Performance 34 20
## Documentary 83 20
## Drama 1077 46
## Horror 235 105
## Multiple Genres 21 20
## Musical 92 25
## Reality 22 20
## Romantic Comedy 265 23
## Thriller/Suspense 425 41
## Western 57 21

# Run a chi-square test on the table
genre.sequel.htest <- chisq.test(genre.sequel.table)

# Print the result
genre.sequel.htest
##
## Pearson's Chi-squared test
##
## data: genre.sequel.table
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## X-squared = 400, df = 10, p-value <2e-16

18.7 Chapter 14: ANOVA

1. Is there a significant relationship between a pirate’s favorite pixar movie and the number of tattoos
(s)he has? Conduct an appropriate ANOVA with fav.pixar as the independent variable, and tattoos
as the dependent variable. If there is a significant relationship, conduct a post-hoc test to determine
which levels of the independent variable(s) differ.

pixar.aov <- aov(formula = tattoos ~ fav.pixar,
data = pirates)

summary(pixar.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## fav.pixar 14 226 16.1 1.43 0.13
## Residuals 985 11105 11.3

Answer: No, there is no significant effect

2. Is there a significant relationship between a pirate’s favorite pirate and how many tattoos (s)he has?
Conduct an appropriate ANOVA with favorite.pirate as the independent variable, and tattoos
as the dependent variable. If there is a significant relationship, conduct a post-hoc test to determine
which levels of the independent variable(s) differ.

favpirate.aov <- aov(formula = tattoos ~ favorite.pirate,
data = pirates)

summary(favpirate.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## favorite.pirate 5 83 16.6 1.47 0.2
## Residuals 994 11248 11.3

Answer: No, there is no significant effect

3. Now, repeat your analysis from the previous two questions, but include both independent variables
fav.pixar and favorite.pirate in the ANOVA. Do your conclusions differ when you include both
variables?

pirpix.aov <- aov(formula = tattoos ~ favorite.pirate + fav.pixar,
data = pirates)

summary(pirpix.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## favorite.pirate 5 83 16.6 1.48 0.19
## fav.pixar 14 218 15.6 1.39 0.15
## Residuals 980 11029 11.2

4. Finally, test if there is an interaction between fav.pixar and favorite.pirate on number of tattoos.
pirpix.int.aov <- aov(formula = tattoos ~ favorite.pirate * fav.pixar,

data = pirates)

summary(pirpix.int.aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## favorite.pirate 5 83 16.6 1.47 0.20
## fav.pixar 14 218 15.6 1.38 0.16



18.8. CHAPTER 15: REGRESSION 291

## favorite.pirate:fav.pixar 65 685 10.5 0.93 0.63
## Residuals 915 10344 11.3

Answer: Nope still nothing

18.8 Chapter 15: Regression

The following questions apply to the auction dataset in the yarrr package. This dataset contains
information about 1,000 ships sold at a pirate auction.

1. The column jbb is the “Jack’s Blue Book” value of a ship. Create a regression object called
jbb.cannon.lm predicting the JBB value of ships based on the number of cannons it has. Based on
your result, how much value does each additional cannon bring to a ship?

library(yarrr)

# jbb.cannon.lm model
# DV = jbb, IV = cannons
jbb.cannon.lm <- lm(formula = jbb ~ cannons,

data = auction)

# Print jbb.cannon.lm coefficients
summary(jbb.cannon.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1396 61 23 1.3e-94
## cannons 101 3 34 1.9e-169

2. Repeat your previous regression, but do two separate regressions: one on modern ships and one on
classic ships. Is there relationship between cannons and JBB the same for both types of ships?

# jbb.cannon.modern.lm model
# DV = jbb, IV = cannons. Only include modern ships
jbb.cannon.modern.lm <- lm(formula = jbb ~ cannons,

data = subset(auction, style == "modern"))

# jbb.cannon.classic.lm model
# DV = jbb, IV = cannons. Only include classic ships
jbb.cannon.classic.lm <- lm(formula = jbb ~ cannons,

data = subset(auction, style == "classic"))

# Print jbb.cannon.modern.lm coefficients
summary(jbb.cannon.modern.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1217 71.8 17 3.5e-51
## cannons 100 3.5 29 3.1e-107

# Print jbb.cannon.classic.lm coefficients
summary(jbb.cannon.classic.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1537 75.9 20 5.9e-67
## cannons 104 3.7 28 2.0e-103

3. Is there a significant interaction between a ship’s style and its age on its JBB value? If so, how do you
interpret the interaction?
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# int.lm model
# DV = jbb, IV = interaction between style and age
int.lm <- lm(formula = jbb ~ style * age,

data = auction
)

# Print int.lm coefficients
summary(int.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3414.2 79.20 43.11 6.0e-230
## stylemodern -15.7 111.74 -0.14 8.9e-01
## age 1.9 0.76 2.57 1.0e-02
## stylemodern:age -3.7 1.07 -3.43 6.2e-04

4. Create a regression object called jbb.all.lm predicting the JBB value of ships based on cannons,
rooms, age, condition, color, and style. Which aspects of a ship significantly affect its JBB value?

# jbb.all.lm model
# DV = jbb, IV = everything (except price)]
jbb.all.lm <- lm(jbb ~ cannons + rooms + age + condition + color + style,

data = auction
)

# Print jbb.all.lm coefficients
summary(jbb.all.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 134.4 52.9 2.54 1.1e-02
## cannons 100.7 1.6 64.92 0.0e+00
## rooms 50.5 1.6 30.80 1.2e-146
## age 1.1 0.2 5.58 3.1e-08
## condition 107.6 3.9 27.51 3.4e-124
## colorbrown 4.9 16.6 0.30 7.7e-01
## colorplum -29.8 31.3 -0.95 3.4e-01
## colorred 15.1 18.3 0.82 4.1e-01
## colorsalmon -19.4 20.7 -0.94 3.5e-01
## stylemodern -397.8 12.8 -30.98 6.7e-148

5. Create a regression object called price.all.lm predicting the actual selling value of ships based on
cannons, rooms, age, condition, color, and style. Based on the results, does the JBB do a good job of
capturing the effect of each variable on a ship’s selling price?

# price.all.lm model
# DV = price, IV = everything (except jbb)]
price.all.lm <- lm(price ~ cannons + rooms + age + condition + color + style,

data = auction
)

# Print price.all.lm coefficients
summary(price.all.lm)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 302.5 73.81 4.10 4.5e-05
## cannons 100.0 2.17 46.17 4.0e-249
## rooms 48.8 2.29 21.34 2.0e-83
## age 1.2 0.29 4.28 2.0e-05
## condition 104.1 5.46 19.05 3.4e-69
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## colorbrown -119.2 23.19 -5.14 3.3e-07
## colorplum 15.6 43.74 0.36 7.2e-01
## colorred -603.6 25.59 -23.59 5.4e-98
## colorsalmon 70.4 28.97 2.43 1.5e-02
## stylemodern -419.2 17.93 -23.38 1.3e-96

6. Repeat your previous regression analysis, but instead of using the price as the dependent variable, use
the binary variable price.gt.3500 indicating whether or not the ship had a selling price greater than
3500. Call the new regression object price.all.blr. Make sure to use the appropriate regression
function!!.

# Create new binary variable indicating whether
# a ship sold for more than 3500
auction$price.gt.3500 <- auction$price > 3500

# price.all.blr model
# DV = price.gt.3500, IV = everything (except jbb)
price.all.blr <- glm(price.gt.3500 ~ cannons + rooms + age + condition + color + style,

data = auction,
family = binomial # Logistic regression
)

# price.all.blr coefficients
summary(price.all.blr)$coefficients
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -19.7401 1.4240 -13.86 1.1e-43
## cannons 0.6251 0.0442 14.14 2.2e-45
## rooms 0.2688 0.0296 9.07 1.2e-19
## age 0.0097 0.0033 2.93 3.4e-03
## condition 0.6825 0.0745 9.16 5.4e-20
## colorbrown -0.8924 0.2549 -3.50 4.6e-04
## colorplum -0.1291 0.5090 -0.25 8.0e-01
## colorred -4.0764 0.4107 -9.93 3.2e-23
## colorsalmon 0.2479 0.3172 0.78 4.3e-01
## stylemodern -2.4037 0.2432 -9.88 4.9e-23

7. Using price.all.lm, predict the selling price of the 3 new ships

cannons rooms age condition color style
12 34 43 7 black classic
8 26 54 3 black modern
32 65 100 5 red modern

# Create a dataframe with new ship data
new.ships <- data.frame(cannons = c(12, 8, 32),

rooms = c(34, 26, 65),
age = c(43, 54, 100),
condition = c(7, 3, 5),
color = c("black", "black", "red"),
style = c("classic", "modern", "modern"),
stringsAsFactors = FALSE)

# Predict new ship data based on price.all.lm model
predict(object = price.all.lm,

newdata = new.ships
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)
## 1 2 3
## 3944 2331 6296

8. Using price.all.blr, predict the probability that the three new ships will have a selling price greater
than 3500.

# Calculate logit of predictions
log.pred <- predict(object = price.all.blr,

newdata = new.ships
)

# Convert logits to probabilities
1 / (1 + exp(-log.pred))
## 1 2 3
## 0.89038 0.00051 1.00000
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